Elfatairi Rana, Ou Jessica, Lebreton Vincent, Mahdjoub Mariam, Kaeokhamloed Norraseth, Bejaud Jérôme, Hilairet Grégory, Gattacceca Florence, Roger Emilie, Legeay Samuel
University Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France.
Computational Pharmacology and Clinical Oncology (COMPO) Unit, Inria Sophia Antipolis-Méditerranée, Cancer Research Center of Marseille, Aix-Marseille Université, COMPO INRIA-CRCM-INSERM-U1068, CNRS UMR7258, Marseille, France.
Nanomedicine (Lond). 2025 May;20(10):1101-1112. doi: 10.1080/17435889.2025.2492537. Epub 2025 Apr 24.
One major challenge is to quantify intact nanoparticles specifically to understand the pharmacokinetics (PK) of nanomedicines. Lipid nanocapsules (LNC) carrying Förster resonance energy transfer (FRET) trackers have been previously developed, and a quantification method has been applied in blood samples.
MATERIALS & METHOD: A quantification method in liver, spleen, and lungs was developed, and the biodistribution of intact FRET-LNC of 50 nm (FRET-LNC-50) in rats after intravenous injection was performed.
FRET-LNC-50 were extracted from organs using a newly developed extraction method, allowing their integrity preservation and quantification. This method allowed the assessment of the biodistribution study of intact LNC. A non-compartmental PK analysis was performed to calculate PK parameters. The most exposed organ was the liver, with a longer half-life than blood and other organs. The availability of specific biodistribution data allowed the development of the first physiologically based PK (PBPK) model, which represents an ideal platform to further aggregate biodistribution data from various nanoparticle types and to bring insight into PK mechanisms and structure-properties relationships of nanoparticles.
This study presents the first biodistribution analysis of intact LNC using a validated quantification method, enabling the development of a PBPK model that improves the understanding of nanoparticle PK mechanisms.
一个主要挑战是对完整的纳米颗粒进行定量,以具体了解纳米药物的药代动力学(PK)。此前已开发出携带荧光共振能量转移(FRET)追踪器的脂质纳米囊(LNC),且已将一种定量方法应用于血样。
开发了一种针对肝脏、脾脏和肺脏的定量方法,并对静脉注射后大鼠体内50纳米完整FRET-LNC(FRET-LNC-50)的生物分布进行了研究。
使用新开发的提取方法从器官中提取FRET-LNC-50,可保持其完整性并进行定量。该方法可对完整LNC的生物分布研究进行评估。进行了非房室PK分析以计算PK参数。暴露程度最高的器官是肝脏,其半衰期比血液和其他器官更长。特定生物分布数据的可得性使得能够开发首个基于生理学的PK(PBPK)模型,该模型是一个理想平台,可进一步汇总来自各种纳米颗粒类型的生物分布数据,并深入了解纳米颗粒的PK机制和结构-性质关系。
本研究使用经过验证的定量方法首次对完整LNC进行了生物分布分析,从而能够开发出一个PBPK模型,增进对纳米颗粒PK机制的理解。