School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
Soft Matter. 2019 Jun 26;15(25):5128-5137. doi: 10.1039/c9sm00751b.
The membrane wrapping and internalization of nanoparticles, such as viruses and drug nanocarriers, through clathrin-mediated endocytosis (CME) are vitally important for intracellular transport. During CME, the shape of the particle plays crucial roles in the determination of particle-membrane interactions, but much of the previous work has been focused on spherical particles. In this work, we develop a stochastic model to study the CME of ellipsoidal particles. In our model, the deformation of the membrane and wrapping of the nanoparticles are driven by the accumulation of clathrin lattices, which is stimulated by the ligand-receptor interactions. Using our model, we systematically investigate the effect of particle shape (ellipsoids with different aspect ratios) on the CME. Our results show three entry modes: tip-first, tilted, and laying-down modes, used by ellipsoidal nanoparticles for internalization depending on the aspect ratio. Certain ellipsoids are able to take multiple entry modes for internalization. Interestingly, the prolate ellipsoid with an aspect ratio of 0.42 can be internalized with a significantly reduced number of ligand-receptor bonds. Particles which can be internalized with fewer bonds are excellent candidates for transcellular drug delivery. Moreover, our results demonstrate that internalization of ellipsoids with intermediate aspect ratios is easier than that of particles with low and high aspect ratios. Our model and simulations provide critical mechanistic insights into CME of ellipsoidal particles, and represent a viable platform for optimal design of nanoparticles for targeted drug delivery applications.
纳米粒子(如病毒和药物纳米载体)通过网格蛋白介导的内吞作用(CME)进行膜包裹和内化,这对于细胞内运输至关重要。在 CME 过程中,粒子的形状在确定粒子-膜相互作用方面起着至关重要的作用,但之前的大部分工作都集中在球形粒子上。在这项工作中,我们开发了一个随机模型来研究椭球粒子的 CME。在我们的模型中,网格蛋白晶格的积累驱动了膜的变形和纳米粒子的包裹,这是由配体-受体相互作用刺激的。使用我们的模型,我们系统地研究了粒子形状(不同纵横比的椭球)对 CME 的影响。我们的结果显示了三种进入模式:尖端首先、倾斜和铺设模式,取决于纵横比,椭球纳米粒子通过这些模式进行内化。某些椭球能够采取多种进入模式进行内化。有趣的是,纵横比为 0.42 的长椭球可以用明显减少的配体-受体键进行内化。能够用较少的键进行内化的粒子是细胞间药物输送的优秀候选者。此外,我们的结果表明,中间纵横比的椭球的内化比低纵横比和高纵横比的粒子更容易。我们的模型和模拟为椭球粒子的 CME 提供了关键的机械见解,并为靶向药物输送应用的纳米粒子的最佳设计提供了可行的平台。