Suppr超能文献

一种遵循临床常规的阿尔茨海默病诊断的多模态灵活框架。

A Modality-Flexible Framework for Alzheimer's Disease Diagnosis Following Clinical Routine.

作者信息

Zhang Yuanwang, Sun Kaicong, Liu Yuxiao, Xie Fang, Guo Qihao, Shen Dinggang

出版信息

IEEE J Biomed Health Inform. 2025 Jan;29(1):535-546. doi: 10.1109/JBHI.2024.3472011. Epub 2025 Jan 7.

Abstract

Dementia has high incidence among the elderly, and Alzheimer's disease (AD) is the most common dementia. The procedure of AD diagnosis in clinics usually follows a standard routine consisting of different phases, from acquiring non-imaging tabular data in the screening phase to MR imaging and ultimately to PET imaging. Most of the existing AD diagnosis studies are dedicated to a specific phase using either single or multi-modal data. In this paper, we introduce a modality-flexible classification framework, which is applicable for different AD diagnosis phases following the clinical routine. Specifically, our framework consists of three branches corresponding to three diagnosis phases: 1) a tabular branch using only tabular data for screening phase, 2) an MRI branch using both MRI and tabular data for uncertain cases in screening phase, and 3) ultimately a PET branch for the challenging cases using all the modalities including PET, MRI, and tabular data. To achieve effective fusion of imaging and non-imaging modalities, we introduce an image-tabular transformer block to adaptively scale and shift the image and tabular features according to modality importance determined by the network. The proposed framework is extensively validated on four cohorts containing 6495 subjects. Experiments demonstrate that our framework achieves superior diagnostic performance than the other representative methods across various AD diagnosis tasks, and shows promising performance for all the diagnosis phases, which exhibits great potential for clinical application.

摘要

痴呆症在老年人中发病率很高,而阿尔茨海默病(AD)是最常见的痴呆症类型。临床上AD的诊断过程通常遵循一个标准流程,包括不同阶段,从筛查阶段获取非影像表格数据到磁共振成像(MR成像),最终到正电子发射断层显像(PET成像)。现有的大多数AD诊断研究都致力于使用单模态或多模态数据的特定阶段。在本文中,我们介绍了一种模态灵活的分类框架,该框架适用于遵循临床常规的不同AD诊断阶段。具体来说,我们的框架由对应于三个诊断阶段的三个分支组成:1)一个表格分支,仅使用表格数据进行筛查阶段;2)一个MR成像分支,在筛查阶段对不确定病例使用MR成像和表格数据;3)最终是一个PET分支,针对具有挑战性的病例使用包括PET、MR成像和表格数据在内的所有模态。为了实现成像和非成像模态的有效融合,我们引入了一个图像 - 表格变换器模块,根据网络确定的模态重要性对图像和表格特征进行自适应缩放和移位。所提出的框架在包含6495名受试者的四个队列上进行了广泛验证。实验表明,我们的框架在各种AD诊断任务中比其他代表性方法具有更优的诊断性能,并且在所有诊断阶段都表现出良好的性能,在临床应用中具有巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验