Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt.
ACS Appl Bio Mater. 2024 Oct 21;7(10):6720-6729. doi: 10.1021/acsabm.4c00877. Epub 2024 Oct 1.
Infections resulting from microorganisms pose an ongoing global public health challenge, necessitating the constant development of novel antimicrobial approaches. Utilizing photocatalytic materials to generate reactive oxygen species (ROS) presents an appealing strategy for combating microbial threats. In alignment with this perspective, sodium titanate nanotubes were prepared by scalable hydrothermal method using TiO and NaOH. Ag, Au, and Ag/Au-modified titanate nanotubes (TNTs) were prepared by a cost-effective and simple ion-exchange method. All samples were characterized by XRD, FT-IR, HRTEM, and DLS techniques. HRTEM images indicated that the tubular structure was preserved in all TNTs even after the replacement of Na with Ag and/or Au ions. The antibacterial activity in dark and sunlight conditions was evaluated using different bacterial strains, , , and . The results showed that while a low bacterial count (∼log 5 cells per well) was used for inoculation, the TNTs exhibited no antibacterial activity against the three bacterial strains, regardless of whether they were tested under light or dark conditions. However, the plasmonic nanoparticle-decorated TNTs showed remarkable activity in the dark. Additionally, Ag/Au-TNTs demonstrated significantly higher activity in the dark compared with either Ag-TNTs or Au-TNTs alone. Notably, under dark conditions, the Au/Ag-TNTs achieved log reductions of up to 4.5 for , 5 for , and 3.7 for . However, when exposed to sunlight, Au/Ag-TNTs resulted in a complete reduction (log reduction ∼9) for and . The combination of two plasmonic nanoparticles (Ag/Au) decorated on the surface of TNTs showed synergetic bactericidal activity under both dark and light conditions. Ag/Au-TNTs could be explored to design surfaces that are responsive to visible light and exhibit antimicrobial properties.
微生物引起的感染对全球公共卫生构成持续挑战,需要不断开发新型抗菌方法。利用光催化材料生成活性氧(ROS)是应对微生物威胁的一种有吸引力的策略。基于这一观点,采用大规模水热法制备了钛酸钠纳米管,使用的原料为 TiO 和 NaOH。采用成本效益高且简单的离子交换法制备了 Ag、Au 以及 Ag/Au 修饰的钛酸盐纳米管(TNTs)。所有样品均通过 XRD、FT-IR、HRTEM 和 DLS 技术进行了表征。HRTEM 图像表明,即使 Na 被 Ag 和/或 Au 离子取代,TNTs 的管状结构也得以保留。在黑暗和阳光条件下,使用不同的细菌菌株 、 、 和 评估了抗菌活性。结果表明,虽然接种时使用了低细菌计数(约每孔 log 5 个细胞),但无论在光照还是黑暗条件下,TNTs 对三种细菌菌株均没有抗菌活性。然而,等离子体纳米粒子修饰的 TNTs 在黑暗中表现出显著的活性。此外,与单独的 Ag-TNTs 或 Au-TNTs 相比,Ag/Au-TNTs 在黑暗中表现出更高的活性。值得注意的是,在黑暗条件下,Au/Ag-TNTs 使 、 、 和 的对数减少分别达到 4.5、5、3.7。然而,在暴露于阳光时,Au/Ag-TNTs 使 完全减少(log 减少约 9)。两种等离子体纳米粒子(Ag/Au)修饰在 TNTs 表面上的组合在黑暗和光照条件下均表现出协同杀菌活性。Ag/Au-TNTs 可用于设计对可见光有响应且具有抗菌性能的表面。