Jacob Athira J, Chitiboi Teodora, Schoepf U Joseph, Sharma Puneet, Aldinger Jonathan, Baker Charles, Lautenschlager Carla, Emrich Tilman, Varga-Szemes Akos
Digital Technology and Innovation, Siemens Healthineers, Princeton, New Jersey, USA.
Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA.
J Magn Reson Imaging. 2025 Apr;61(4):1635-1647. doi: 10.1002/jmri.29619. Epub 2024 Oct 1.
Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI.
To develop an MRI-based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and ischemic heart disease (IHD).
Retrospective.
A total of 1337 subjects (55% female), comprising normal subjects (N = 568), and patients with DCM (N = 151), HCM (N = 177), and IHD (N = 441).
FIELD STRENGTH/SEQUENCE: Balanced steady-state free precession cine sequence at 1.5/3.0 T.
Bi-ventricular morphological and functional features and global and segmental left ventricular strain features were automatically extracted from short- and long-axis cine images. Variational autoencoder models were trained on the extracted features and compared against consensus disease label provided by two expert readers (13 and 14 years of experience). Adding unlabeled, normal data to the training was explored to increase specificity of NORM class.
Tenfold cross-validation for model development; mean, standard deviation (SD) for measurements; classification metrics: area under the curve (AUC), confusion matrix, accuracy, specificity, precision, recall; 95% confidence intervals; Mann-Whitney U test for significance.
AUCs of 0.952 for NORM, 0.881 for DCM, 0.908 for HCM, and 0.856 for IHD and overall accuracy of 0.778 were obtained, with specificity of 0.908 for the NORM class using both SAX and LAX features. Longitudinal strain features slightly improved classification metrics by 0.001 to 0.03 points, except for HCM-AUC. Differences in accuracy, metrics for NORM class and HCM-AUC were statistically significant. Cotraining using unlabeled data increased the specificity for the NORM class to 0.961.
Cardiac function features automatically extracted from cine MRI have potential to be used for disease classification, especially for normal-abnormal classification. Feature analyses showed that strain features were important for disease labeling. Cotraining using unlabeled data may help to increase specificity for normal-abnormal classification.
3 TECHNICAL EFFICACY: Stage 1.
自动化方法可能有助于通过磁共振成像(MRI)对心血管疾病进行快速、可重复的临床评估。
开发一种基于MRI的深度学习(DL)疾病分类算法,以区分正常受试者(NORM)、扩张型心肌病(DCM)患者、肥厚型心肌病(HCM)患者和缺血性心脏病(IHD)患者。
回顾性研究。
共1337名受试者(55%为女性),包括正常受试者(N = 568)、DCM患者(N = 151)、HCM患者(N = 177)和IHD患者(N = 441)。
场强/序列:1.5/3.0 T的平衡稳态自由进动电影序列。
从短轴和长轴电影图像中自动提取双心室形态和功能特征以及整体和节段性左心室应变特征。对提取的特征训练变分自编码器模型,并与两名有13年和14年经验的专家读者提供的一致性疾病标签进行比较。探索在训练中添加未标记的正常数据以提高NORM类的特异性。
模型开发采用十折交叉验证;测量值采用均值、标准差(SD);分类指标:曲线下面积(AUC)、混淆矩阵、准确率、特异性、精确率、召回率;95%置信区间;采用Mann-Whitney U检验进行显著性分析。
NORM的AUC为0.952,DCM为0.881,HCM为0.908,IHD为0.856,总体准确率为0.778,使用短轴和长轴特征时NORM类的特异性为0.908。纵向应变特征使分类指标略有提高,提高了0.001至0.03个百分点,但HCM的AUC除外。准确率、NORM类指标和HCM的AUC差异具有统计学意义。使用未标记数据的协同训练将NORM类的特异性提高到0.961。
从电影MRI自动提取的心脏功能特征有潜力用于疾病分类,尤其是正常与异常分类。特征分析表明应变特征对疾病标记很重要。使用未标记数据的协同训练可能有助于提高正常与异常分类的特异性。
3 技术效能:1级