Raj Ravi, Kos Andrzej
Faculty of Computer Science, Electronics, and Telecommunications, AGH University of Krakow, Aleja Adama Mickiewicza 30, Krakow, 30-059, Poland.
Sci Rep. 2024 Oct 1;14(1):22852. doi: 10.1038/s41598-024-72857-3.
The usage of mobile robots (MRs) has expanded dramatically in the last several years across a wide range of industries, including manufacturing, surveillance, healthcare, and warehouse automation. To ensure the efficient and safe operation of these MRs, it is crucial to design effective control strategies that can adapt to changing environments. In this paper, we propose a new technique for controlling MRs using reinforcement learning (RL). Our approach involves mathematical model generation and later training a neural network (NN) to learn a policy for robot control using RL. The policy is learned through trial and error, where MR explores the environment and receives rewards based on its actions. The rewards are designed to encourage the robot to move towards its goal while avoiding obstacles. In this work, a deep Q-learning (QL) agent is used to enable robots to autonomously learn to avoid collisions with obstacles and enhance navigation abilities in an unknown environment. When operating MR independently within an unfamiliar area, a RL model is used to identify the targeted location, and the Deep Q-Network (DQN) is used to navigate to the goal location. We evaluate our approach using a simulation using the Epsilon-Greedy algorithm. The results show that our approach outperforms traditional MR control strategies in terms of both efficiency and safety.
在过去几年中,移动机器人(MR)的应用在包括制造业、监控、医疗保健和仓库自动化在内的广泛行业中急剧扩展。为确保这些移动机器人的高效和安全运行,设计能够适应不断变化环境的有效控制策略至关重要。在本文中,我们提出了一种使用强化学习(RL)来控制移动机器人的新技术。我们的方法包括生成数学模型,然后训练神经网络(NN)以使用强化学习来学习机器人控制策略。该策略通过试错来学习,移动机器人在这个过程中探索环境并根据其行动获得奖励。奖励的设计旨在鼓励机器人朝着目标移动,同时避开障碍物。在这项工作中,一个深度Q学习(QL)智能体被用于使机器人能够在未知环境中自主学习避免与障碍物碰撞并增强导航能力。当在不熟悉的区域独立操作移动机器人时,一个强化学习模型被用于识别目标位置,并且深度Q网络(DQN)被用于导航到目标位置。我们使用ε-贪婪算法通过模拟来评估我们的方法。结果表明,我们的方法在效率和安全性方面均优于传统的移动机器人控制策略。