Suppr超能文献

考虑非线性动力学模型的社交机器人自主导航集成决策控制

Integrated decision-control for social robot autonomous navigation considering nonlinear dynamics model.

作者信息

Li Hui, Luo Mingyue, Luo Wanbo, Li Hewei, Cong Shuofeng

机构信息

School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, Jilin, China.

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.

出版信息

PLoS One. 2025 Jun 6;20(6):e0324341. doi: 10.1371/journal.pone.0324341. eCollection 2025.

Abstract

Reinforcement learning (RL) has demonstrated significant potential in social robot autonomous navigation, yet existing research lacks in-depth discussion on the feasibility of navigation strategies. Therefore, this paper proposes an Integrated Decision-Control Framework for Social Robot Autonomous Navigation (IDC-SRAN), which accounts for the nonlinearity of social robot model and ensures the feasibility of decision-control strategy. Initially, inverse reinforcement learning (IRL) is employed to tackle the challenge of designing pedestrian walking reward. Subsequently, the Four-Mecanum-Wheel Robot dynamic model is constructed to develop IDC-SRAN, resolving the issue of dynamics mismatch of RL system. The actions of IDC-SRAN are defined as additional torque, with actual torque and lateral/longitudinal velocities integrated into the state space. The feasibility of the decision-control strategy is ensured by constraining the range of actions. Furthermore, a critical challenge arises from the state delay caused by model transient characteristics, which complicates the articulation of nonlinear relationships between states and actions through IRL-based rewards. To mitigate this, a driving-force-guided reward is proposed. This reward guides the robot to explore more appropriate decision-control strategies by expected direction of driving force, thereby reducing non-optimal behaviors during transient phases. Experimental results demonstrate that IDC-SRAN achieves peak accelerations approximately 8.3% of baseline methods, significantly enhancing the feasibility of decision-control strategies. Simultaneously, the framework enables goal-oriented autonomous navigation through active torque modulation, attaining a task completion rate exceeding 90%. These outcomes further validate the intelligence and robustness of the proposed IDC-SRAN.

摘要

强化学习(RL)在社交机器人自主导航中已展现出巨大潜力,但现有研究对导航策略的可行性缺乏深入探讨。因此,本文提出了一种社交机器人自主导航综合决策控制框架(IDC-SRAN),该框架考虑了社交机器人模型的非线性,并确保了决策控制策略的可行性。首先,采用逆强化学习(IRL)来应对设计行人行走奖励的挑战。随后,构建四轮麦克纳姆轮机器人动力学模型以开发IDC-SRAN,解决了RL系统的动力学不匹配问题。将IDC-SRAN的动作定义为附加扭矩,并将实际扭矩和横向/纵向速度整合到状态空间中。通过限制动作范围来确保决策控制策略的可行性。此外,模型瞬态特性导致的状态延迟带来了一个关键挑战,这使得通过基于IRL的奖励来清晰表达状态与动作之间的非线性关系变得复杂。为了缓解这一问题,提出了一种驱动力引导奖励。该奖励通过预期的驱动力方向引导机器人探索更合适的决策控制策略,从而减少瞬态阶段的非最优行为。实验结果表明,IDC-SRAN实现的峰值加速度约为基线方法的8.3%,显著提高了决策控制策略的可行性。同时,该框架通过主动扭矩调制实现了目标导向的自主导航,任务完成率超过90%。这些结果进一步验证了所提出的IDC-SRAN的智能性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/953b/12143553/92e180c3d9fc/pone.0324341.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验