Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
School of Public Health, University of Washington, Seattle, WA, USA.
Diabetologia. 2024 Nov;67(11):2481-2493. doi: 10.1007/s00125-024-06274-6. Epub 2024 Oct 1.
AIMS/HYPOTHESIS: The aim of this work was to explore molecular amino acids (AAs) and related structures of HLA-DQA1-DQB1 that underlie its contribution to the progression from stages 1 or 2 to stage 3 type 1 diabetes.
Using high-resolution DQA1 and DQB1 genotypes from 1216 participants in the Diabetes Prevention Trial-Type 1 and the Diabetes Prevention Trial, we applied hierarchically organised haplotype association analysis (HOH) to decipher which AAs contributed to the associations of DQ with disease and their structural properties. HOH relied on the Cox regression to quantify the association of DQ with time-to-onset of type 1 diabetes.
By numerating all possible DQ heterodimers of α- and β-chains, we showed that the heterodimerisation increases genetic diversity at the cellular level from 43 empirically observed haplotypes to 186 possible heterodimers. Heterodimerisation turned several neutral haplotypes (DQ2.2, DQ2.3 and DQ4.4) to risk haplotypes (DQ2.2/2.3-DQ4.4 and DQ4.4-DQ2.2). HOH uncovered eight AAs on the α-chain (-16α, -13α, -6α, α22, α23, α44, α72, α157) and six AAs on the β-chain (-18β, β9, β13, β26, β57, β135) that contributed to the association of DQ with progression of type 1 diabetes. The specific AAs concerned the signal peptide (minus sign, possible linkage to expression levels), pockets 1, 4 and 9 in the antigen-binding groove of the α1β1 domain, and the putative homodimerisation of the αβ heterodimers.
CONCLUSIONS/INTERPRETATION: These results unveil the contribution made by DQ to type 1 diabetes progression at individual residues and related protein structures, shedding light on its immunological mechanisms and providing new leads for developing treatment strategies.
Clinical trial data and biospecimen samples are available through the National Institute of Diabetes and Digestive and Kidney Diseases Central Repository portal ( https://repository.niddk.nih.gov/studies ).
目的/假设:本研究旨在探讨 HLA-DQA1-DQB1 分子氨基酸(AA)及其相关结构,以阐明其对从 1 型糖尿病 1 期或 2 期进展至 3 期的作用。
利用来自 1216 名糖尿病预防试验-1 型和糖尿病预防试验参与者的高分辨率 DQA1 和 DQB1 基因型,我们应用层次化单体型关联分析(HOH)来解码哪些 AA 与疾病相关,并解析其结构特性。HOH 依赖于 Cox 回归来量化 DQ 与 1 型糖尿病发病时间的关联。
通过对 α 和 β 链的所有可能 DQ 异二聚体进行计数,我们表明异二聚化使细胞水平的遗传多样性从 43 个经验观察到的单体型增加到 186 个可能的异二聚体。异二聚化使几个中性单体型(DQ2.2、DQ2.3 和 DQ4.4)变为风险单体型(DQ2.2/2.3-DQ4.4 和 DQ4.4-DQ2.2)。HOH 揭示了 8 个在 α 链上的 AA(-16α、-13α、-6α、α22、α23、α44、α72、α157)和 6 个在 β 链上的 AA(-18β、β9、β13、β26、β57、β135)与 DQ 与 1 型糖尿病进展相关。具体的 AA 涉及信号肽(减号,可能与表达水平有关)、抗原结合槽的口袋 1、4 和 9,以及 αβ 异二聚体的假定同源二聚化。
结论/解释:这些结果揭示了 DQ 在单个残基和相关蛋白质结构上对 1 型糖尿病进展的贡献,阐明了其免疫机制,并为开发治疗策略提供了新的线索。
临床试验数据和生物样本可通过国家糖尿病、消化和肾脏疾病研究所中央存储库门户(https://repository.niddk.nih.gov/studies)获取。