Wang Changhong, Liu Zhengyang, Peng Quanxiao, Xing Dandan, Hu Tao, Du Feng, Li Changming, Ma Ruguang, Yang Hongbin, Guo Chunxian
School of Materials Science and Engineering, Suzhou University of Science and Technology, 215011, Suzhou, P. R. China.
Shanghai Applied Radiation Institute, Shanghai University, 200444, Shanghai, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202415259. doi: 10.1002/anie.202415259. Epub 2024 Nov 6.
Electrochemical reduction of nitrate to ammonia (NRA) offers a sustainable approach for NH production and NO removal but suffers from low NH yield rate (<1.20 mmol h cm). We present bimetallic CuAg nanotips with tailored local environment, which achieve an ultrahigh NH yield rate of 2.36 mmol h cm at a low applied potential of -0.33 V vs. RHE, a high Faradaic efficiency (FE) of 98.8 %, and long-term operation stability at 1800 mg-N L NO , outperforming most of the recently reported catalysts. At a NO concentration as low as 15 mg-N L, it still delivers a high FE of 86.9 % and an NH selectivity of 93.8 %. Finite-element method and density functional theory calculations reveal that the CuAg exhibits reduced adsorption energy barrier of *N intermediates, favorable water dissociation for *H generation and high energy barrier for H formation, while its tip-enhanced enrichment promoting NO accumulation.
将硝酸盐电化学还原为氨(NRA)为氨的生产和硝酸盐的去除提供了一种可持续的方法,但氨产率较低(<1.20 mmol h cm)。我们展示了具有定制局部环境的双金属铜银纳米尖端,其在相对于可逆氢电极(RHE)为 -0.33 V 的低施加电位下实现了 2.36 mmol h cm 的超高氨产率、98.8% 的高法拉第效率(FE)以及在 1800 mg-N L 硝酸盐浓度下的长期运行稳定性,优于最近报道的大多数催化剂。在低至 15 mg-N L 的硝酸盐浓度下,它仍具有 86.9% 的高法拉第效率和 93.8% 的氨选择性。有限元方法和密度泛函理论计算表明,铜银表现出 *N 中间体吸附能垒降低、有利于生成 *H 的水离解以及形成 H 的高能垒,同时其尖端增强富集促进了硝酸盐的积累。