Suppr超能文献

先进的机器学习揭示了CD8 + T细胞基因标志物可增强乳腺癌的预后和免疫治疗效果。

Advanced machine learning unveils CD8 + T cell genetic markers enhancing prognosis and immunotherapy efficacy in breast cancer.

作者信息

Ma Haodi, Shi LinLin, Zheng Jiayu, Zeng Li, Chen Youyou, Zhang Shunshun, Tang Siya, Qu Zhifeng, Xiong Xin, Zheng Xuewei, Yin Qinan

机构信息

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.

State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China.

出版信息

BMC Cancer. 2024 Oct 1;24(1):1222. doi: 10.1186/s12885-024-12952-w.

Abstract

BACKGROUND

Breast cancer (BC) is the most common cancer in women and poses a significant health burden, especially in China. Despite advances in diagnosis and treatment, patient variability and limited early detection contribute to poor outcomes. This study examines the role of CD8 + T cells in the tumor microenvironment to identify new biomarkers that improve prognosis and guide treatment strategies.

METHODS

CD8 + T-cell marker genes were identified using single-cell RNA sequencing (scRNA-seq), and a CD8 + T cell-related gene prognostic signature (CTRGPS) was developed using 10 machine-learning algorithms. The model was validated across seven independent public datasets from the GEO database. Clinical features and previously published signatures were also analyzed for comparison. The clinical applications of CTRGPS in biological function, immune microenvironment, and drug selection were explored, and the role of hub genes in BC progression was further investigated.

RESULTS

We identified 71 CD8 + T cell-related genes and developed the CTRGPS, which demonstrated significant prognostic value, with higher risk scores linked to poorer overall survival (OS). The model's accuracy and robustness were confirmed through Kaplan-Meier and ROC curve analyses across multiple datasets. CTRGPS outperformed existing prognostic signatures and served as an independent prognostic factor. The role of the hub gene TTK in promoting malignant proliferation and migration of BC cells was validated.

CONCLUSION

The CTRGPS enhances early diagnosis and treatment precision in BC, improving clinical outcomes. TTK, a key gene in the signature, shows promise as a therapeutic target, supporting the CTRGPS's potential clinical utility.

摘要

背景

乳腺癌(BC)是女性中最常见的癌症,构成了重大的健康负担,在中国尤其如此。尽管在诊断和治疗方面取得了进展,但患者的个体差异和早期检测的局限性导致了不良预后。本研究探讨CD8 + T细胞在肿瘤微环境中的作用,以确定可改善预后并指导治疗策略的新生物标志物。

方法

使用单细胞RNA测序(scRNA-seq)鉴定CD8 + T细胞标记基因,并使用10种机器学习算法开发了CD8 + T细胞相关基因预后特征(CTRGPS)。该模型在来自GEO数据库的七个独立公共数据集中进行了验证。还分析了临床特征和先前发表的特征以作比较。探讨了CTRGPS在生物学功能、免疫微环境和药物选择方面的临床应用,并进一步研究了枢纽基因在BC进展中的作用。

结果

我们鉴定了71个CD8 + T细胞相关基因并开发了CTRGPS,其显示出显著的预后价值,较高的风险评分与较差的总生存期(OS)相关。通过多个数据集的Kaplan-Meier和ROC曲线分析证实了该模型的准确性和稳健性。CTRGPS优于现有的预后特征,并作为独立的预后因素。枢纽基因TTK在促进BC细胞恶性增殖和迁移中的作用得到了验证。

结论

CTRGPS提高了BC的早期诊断和治疗精度,改善了临床结果。该特征中的关键基因TTK有望成为治疗靶点,支持CTRGPS的潜在临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa74/11446097/00e654c8b684/12885_2024_12952_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验