Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China.
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
J Transl Med. 2023 Sep 2;21(1):588. doi: 10.1186/s12967-023-04468-x.
BACKGROUND: Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. METHODS: We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. RESULTS: The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. CONCLUSION: Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.
背景:低级别胶质瘤(LGG)是一种高度异质性疾病,在准确预测患者预后方面存在挑战。线粒体在真核细胞的能量代谢中发挥核心作用,并能影响细胞死亡机制,这在肿瘤发生和进展中至关重要。然而,线粒体功能与细胞死亡之间相互作用在 LGG 中的预后意义需要进一步研究。
方法:我们采用了稳健的计算框架,研究了来自全球六个多中心队列的 1467 名 LGG 患者队列中线粒体功能与 18 种细胞死亡模式之间的关系。共收集了 10 种常用的机器学习算法,并随后将其组合成 101 种独特的组合。最终,我们使用表现出最佳性能的机器学习模型设计了线粒体相关程序性细胞死亡指数(mtPCDI)。
结果:由 18 个高度有影响力的基因组合生成的 mtPCDI ,在 LGG 患者的预后预测中表现出强大的预测性能。从生物学角度看,mtPCDI 与免疫和代谢特征显著相关。高 mtPCDI 组表现出丰富的代谢途径和增强的免疫活性特征。值得注意的是,即使在调整潜在混杂因素后,我们的 mtPCDI 仍然是最有力的预后指标,在预测强度上超过了既定的临床模型。
结论:我们使用稳健的机器学习框架,突出了 mtPCDI 在为 LGG 患者提供个性化风险评估和代谢及免疫治疗干预建议方面的巨大潜力。特别重要的是,该特征高度有影响力的基因进一步为未来研究线粒体功能中的 PCD 作用提供了前景。
Front Genet. 2024-9-4
Ann Med Surg (Lond). 2025-8-19
Genes (Basel). 2025-7-27
Am J Cancer Res. 2022-11-15
Front Cell Dev Biol. 2022-2-25
Biotechnol Adv. 2021