文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合机器学习生存框架基于大型多中心低级别胶质瘤队列中线粒体功能和细胞死亡模式的相互交流定义,开发了一种预后模型。

Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma.

机构信息

Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China.

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.

出版信息

J Transl Med. 2023 Sep 2;21(1):588. doi: 10.1186/s12967-023-04468-x.


DOI:10.1186/s12967-023-04468-x
PMID:37660060
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10474752/
Abstract

BACKGROUND: Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. METHODS: We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. RESULTS: The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. CONCLUSION: Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.

摘要

背景:低级别胶质瘤(LGG)是一种高度异质性疾病,在准确预测患者预后方面存在挑战。线粒体在真核细胞的能量代谢中发挥核心作用,并能影响细胞死亡机制,这在肿瘤发生和进展中至关重要。然而,线粒体功能与细胞死亡之间相互作用在 LGG 中的预后意义需要进一步研究。

方法:我们采用了稳健的计算框架,研究了来自全球六个多中心队列的 1467 名 LGG 患者队列中线粒体功能与 18 种细胞死亡模式之间的关系。共收集了 10 种常用的机器学习算法,并随后将其组合成 101 种独特的组合。最终,我们使用表现出最佳性能的机器学习模型设计了线粒体相关程序性细胞死亡指数(mtPCDI)。

结果:由 18 个高度有影响力的基因组合生成的 mtPCDI ,在 LGG 患者的预后预测中表现出强大的预测性能。从生物学角度看,mtPCDI 与免疫和代谢特征显著相关。高 mtPCDI 组表现出丰富的代谢途径和增强的免疫活性特征。值得注意的是,即使在调整潜在混杂因素后,我们的 mtPCDI 仍然是最有力的预后指标,在预测强度上超过了既定的临床模型。

结论:我们使用稳健的机器学习框架,突出了 mtPCDI 在为 LGG 患者提供个性化风险评估和代谢及免疫治疗干预建议方面的巨大潜力。特别重要的是,该特征高度有影响力的基因进一步为未来研究线粒体功能中的 PCD 作用提供了前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/8be6c87e573f/12967_2023_4468_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/0fed9a712b05/12967_2023_4468_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/403b564846fd/12967_2023_4468_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/8a13b693b201/12967_2023_4468_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/a08259e3e368/12967_2023_4468_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/bf0c23fd0914/12967_2023_4468_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/35e611bfb1ba/12967_2023_4468_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/89e6bfc7acac/12967_2023_4468_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/4466692a0fb7/12967_2023_4468_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/205c6436b2e2/12967_2023_4468_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/1e32869ef209/12967_2023_4468_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/ac8de6e25b37/12967_2023_4468_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/8be6c87e573f/12967_2023_4468_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/0fed9a712b05/12967_2023_4468_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/403b564846fd/12967_2023_4468_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/8a13b693b201/12967_2023_4468_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/a08259e3e368/12967_2023_4468_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/bf0c23fd0914/12967_2023_4468_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/35e611bfb1ba/12967_2023_4468_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/89e6bfc7acac/12967_2023_4468_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/4466692a0fb7/12967_2023_4468_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/205c6436b2e2/12967_2023_4468_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/1e32869ef209/12967_2023_4468_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/ac8de6e25b37/12967_2023_4468_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75c/10474752/8be6c87e573f/12967_2023_4468_Fig12_HTML.jpg

相似文献

[1]
Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma.

J Transl Med. 2023-9-2

[2]
mtPCDI: a machine learning-based prognostic model for prostate cancer recurrence.

Front Genet. 2024-9-4

[3]
Integrated multi-omics analysis and machine learning developed a prognostic model based on mitochondrial function in a large multicenter cohort for Gastric Cancer.

J Transl Med. 2024-4-23

[4]
Integration of machine learning for developing a prognostic signature related to programmed cell death in colorectal cancer.

Environ Toxicol. 2024-5

[5]
Machine learning identification of cuproptosis and necroptosis-associated molecular subtypes to aid in prognosis assessment and immunotherapy response prediction in low-grade glioma.

Front Genet. 2022-9-12

[6]
A Novel Mitochondrial-Related Gene Signature for the Prediction of Prognosis and Therapeutic Efficacy in Lower-Grade Glioma.

Biochem Genet. 2024-10-2

[7]
Elucidating the Role of Pyroptosis in Lower-Grade Glioma: Development of a Novel Scoring System to Enhance Personalized Therapeutic Approaches.

J Mol Neurosci. 2023-8

[8]
The combined signatures of telomere and immune cell landscape provide a prognostic and therapeutic biomarker in glioma.

Front Immunol. 2023

[9]
Construction and validation of an immune infiltration-related risk model for predicting prognosis and immunotherapy response in low grade glioma.

BMC Cancer. 2023-8-5

[10]
Machine learning-based investigation of regulated cell death for predicting prognosis and immunotherapy response in glioma patients.

Sci Rep. 2024-2-20

引用本文的文献

[1]
Innovative strategies for mitochondrial dysfunction in myeloproliferative neoplasms a step toward precision medicine.

Ann Med Surg (Lond). 2025-8-19

[2]
Bioinformatics Analysis Reveals the Oncogenic Role and Therapeutic Potential of lncRNA SNHG25 in Colon Adenocarcinoma.

Int J Genomics. 2025-8-23

[3]
Identification and experimental validation of biomarkers related to mitochondrial and programmed cell death in obsessive-compulsive disorder.

Sci Rep. 2025-8-30

[4]
SLC39A14 Is a Potential Therapy Target and Prognostic Biomarker for Acute Myeloid Leukemia.

Genes (Basel). 2025-7-27

[5]
Machine learning based screening of biomarkers associated with cell death and immunosuppression of multiple life stages sepsis populations.

Sci Rep. 2025-8-19

[6]
Machine learning-based construction of Immunogenic cell death-related score for improving prognosis and personalized treatment in glioma.

Sci Rep. 2025-8-19

[7]
Integrative machine learning and bioinformatics analysis to identify cellular senescence-related genes and potential therapeutic targets in ulcerative colitis and colorectal cancer.

Front Bioinform. 2025-7-28

[8]
Programmed cell death signatures-driven microglial transformation in Alzheimer's disease: single-cell transcriptomics and functional validation.

Front Immunol. 2025-7-25

[9]
Machine learning-driven multi-omics analysis identifies a prognostic gene signature associated with programmed cell death and metabolism in hepatocellular carcinoma.

Biol Proced Online. 2025-8-9

[10]
Machine learning derived development and validation of extracellular matrix related signature for predicting prognosis in adolescents and young adults glioma.

Sci Rep. 2025-8-7

本文引用的文献

[1]
Methionine deprivation inhibits glioma growth through downregulation of CTSL.

Am J Cancer Res. 2022-11-15

[2]
Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery.

Int J Surg. 2022-11

[3]
Development and validation of a novel endoplasmic reticulum stress-related lncRNA prognostic signature and candidate drugs in breast cancer.

Front Genet. 2022-8-25

[4]
Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields.

Cancer Med. 2023-2

[5]
Mitochondrial Dynamics, Mitophagy, and Mitochondria-Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia.

Front Cell Dev Biol. 2022-2-25

[6]
Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.

Nat Commun. 2022-2-10

[7]
Integrated clinical characteristics and omics analysis identifies a ferroptosis and iron-metabolism-related lncRNA signature for predicting prognosis and therapeutic responses in ovarian cancer.

J Ovarian Res. 2022-1-20

[8]
Integrative analysis from multi-center studies identities a consensus machine learning-derived lncRNA signature for stage II/III colorectal cancer.

EBioMedicine. 2022-1

[9]
miR-139/PDE2A-Notch1 feedback circuit represses stemness of gliomas by inhibiting Wnt/β-catenin signaling.

Int J Biol Sci. 2021

[10]
Using machine learning approaches for multi-omics data analysis: A review.

Biotechnol Adv. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索