Tahami Mohadeseh S, Vargas-Chavez Carlos, Poikela Noora, Coronado-Zamora Marta, González Josefa, Kankare Maaria
Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
Mob DNA. 2024 Oct 1;15(1):18. doi: 10.1186/s13100-024-00328-7.
Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates.
Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11-13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints.
Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
过去一个世纪的大量发现表明,转座元件(TEs)可通过影响基因表达、诱导基因重排以及产生其他分子和结构效应,在基因组进化中发挥关键作用。然而,我们对TEs在适应极端气候中的作用的了解仍处于起步阶段。长读长测序技术的出现为更精确地识别和研究TEs的潜在功能效应提供了可能。在这项研究中,我们以蒙大拿果蝇作为适应寒冷生物的模型,来研究TEs与适应恶劣气候之间的关联。
利用PacBio长读长测序技术,我们从头识别并人工整理了来自生态地理上不同种群的五个蒙大拿果蝇基因组中的TE序列。我们识别出489个新的TE共有序列,占蒙大拿果蝇TE共有序列总数的92%。总体而言,蒙大拿果蝇基因组的11% - 13%被TEs占据,正如预期的那样,它们在基因组中呈非随机分布。我们识别出五个潜在活跃的TE家族,其中大多数属于TEs的逆转录转座子类。此外,我们在五个分析的基因组中发现了位于先前鉴定的耐寒基因附近的TEs。其中一些TEs包含启动子元件和转录结合位点。最后,我们在固定和多态倒位断点附近检测到了TEs。
我们的研究揭示了蒙大拿果蝇基因组中大量新识别出的TE共有序列,这表明应该对非模式物种进行研究,以便全面了解果蝇属及其他物种中的TEs库。利用新的蒙大拿果蝇文库进行基因组注释,使我们能够识别位于耐寒基因附近且在种群中高频出现的TEs,这些TEs包含调控区域,因此很可能在蒙大拿果蝇的冷应激反应中发挥作用。最后,我们的注释还首次让我们识别出了存在于三个蒙大拿果蝇倒位断点处的TEs。