Bliven Emily K, Fung Anita, Baker Alexander, Fleps Ingmar, Ferguson Stephen J, Guy Pierre, Helgason Benedikt, Cripton Peter A
School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
J Orthop Res. 2025 Feb;43(2):396-406. doi: 10.1002/jor.25984. Epub 2024 Oct 1.
Hip fracture prevention approaches like prophylactic augmentation devices have been proposed to strengthen the femur and prevent hip fracture in a fall scenario. The aim of this study was to validate the finite element model (FEM) of specimens augmented by prophylactic intramedullary nailing in a simulated sideways fall impact against ex vivo experimental data. A dynamic inertia-driven sideways fall simulator was used to test six cadaveric specimens (3 females, 3 males, age 63-83 years) prophylactically implanted with an intramedullary nailing system used to augment the femur. Impact force measurements, pelvic deformation, effective pelvic stiffness, and fracture outcomes were compared between the ex vivo experiments and the FEMs. The FEMs over-predicted the effective pelvic stiffness for most specimens and showed variability in terms of under- and over-predicting peak impact force and pelvis compression depending on the specimen. A significant correlation was found for time to peak impact force when comparing ex vivo and FEM data. No femoral fractures were found in the ex vivo experiments, but two specimens sustained pelvic fractures. These two pelvis fractures were correctly identified by the FEMs, but the FEMs made three additional false-positive fracture identifications. These validation results highlight current limitations of these sideways fall impact models specific to the inclusion of an orthopaedic implant. These FEMs present a conservative strategy for fracture prediction in future applications. Further evaluation of the modelling approaches used for the bone-implant interface is recommended for modelling augmented specimens, alongside the importance of maintaining well-controlled experimental conditions.
诸如预防性增强装置之类的髋部骨折预防方法已被提出,以增强股骨并在跌倒情况下预防髋部骨折。本研究的目的是在模拟侧方跌倒冲击中,将预防性髓内钉增强的标本有限元模型(FEM)与离体实验数据进行验证。使用动态惯性驱动的侧方跌倒模拟器对六个预防性植入用于增强股骨的髓内钉系统的尸体标本(3名女性,3名男性,年龄63 - 83岁)进行测试。比较了离体实验和有限元模型之间的冲击力测量、骨盆变形、有效骨盆刚度和骨折结果。有限元模型对大多数标本的有效骨盆刚度预测过高,并且在根据标本预测峰值冲击力和骨盆压缩方面存在低估和高估的差异。在比较离体和有限元模型数据时,发现达到峰值冲击力的时间存在显著相关性。在离体实验中未发现股骨骨折,但有两个标本发生了骨盆骨折。这两个骨盆骨折被有限元模型正确识别,但有限元模型还做出了另外三个假阳性骨折识别。这些验证结果突出了这些特定于包含骨科植入物的侧方跌倒冲击模型的当前局限性。这些有限元模型为未来应用中的骨折预测提供了一种保守策略。对于增强标本的建模,建议进一步评估用于骨 - 植入物界面的建模方法,同时强调保持良好控制的实验条件的重要性。