Suppr超能文献

分层判别学习改善了生物医学显微镜的视觉表征。

Hierarchical discriminative learning improves visual representations of biomedical microscopy.

作者信息

Jiang Cheng, Hou Xinhai, Kondepudi Akhil, Chowdury Asadur, Freudiger Christian W, Orringer Daniel A, Lee Honglak, Hollon Todd C

机构信息

University of Michigan.

Invenio Imaging.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:19798-19808. doi: 10.1109/cvpr52729.2023.01896. Epub 2023 Aug 22.

Abstract

Learning high-quality, self-supervised, visual representations is essential to advance the role of computer vision in biomedical microscopy and clinical medicine. Previous work has focused on self-supervised representation learning (SSL) methods developed for instance discrimination and applied them directly to image patches, or fields-of-view, sampled from gigapixel whole-slide images (WSIs) used for cancer diagnosis. However, this strategy is limited because it (1) assumes patches from the same patient are independent, (2) neglects the patient-slide-patch hierarchy of clinical biomedical microscopy, and (3) requires strong data augmentations that can degrade downstream performance. Importantly, sampled patches from WSIs of a patient's tumor are a diverse set of image examples that capture the same underlying cancer diagnosis. This motivated HiDisc, a data-driven method that leverages the inherent patient-slide-patch hierarchy of clinical biomedical microscopy to define a hierarchical discriminative learning task that implicitly learns features of the underlying diagnosis. HiDisc uses a self-supervised contrastive learning framework in which positive patch pairs are defined based on a common ancestry in the data hierarchy, and a unified patch, slide, and patient discriminative learning objective is used for visual SSL. We benchmark HiDisc visual representations on two vision tasks using two biomedical microscopy datasets, and demonstrate that (1) HiDisc pretraining outperforms current state-of-the-art self-supervised pretraining methods for cancer diagnosis and genetic mutation prediction, and (2) HiDisc learns high-quality visual representations using natural patch diversity without strong data augmentations.

摘要

学习高质量的自监督视觉表征对于提升计算机视觉在生物医学显微镜检查和临床医学中的作用至关重要。先前的工作主要集中在为实例判别开发的自监督表征学习(SSL)方法,并将其直接应用于从用于癌症诊断的千兆像素全切片图像(WSIs)中采样的图像块或视野。然而,这种策略存在局限性,因为它(1)假设来自同一患者的图像块是独立的,(2)忽略了临床生物医学显微镜检查中的患者-切片-图像块层次结构,以及(3)需要强大的数据增强,而这可能会降低下游性能。重要的是,从患者肿瘤的WSIs中采样的图像块是一组多样的图像示例,它们捕捉了相同的潜在癌症诊断。这促使了HiDisc的产生,这是一种数据驱动的方法,它利用临床生物医学显微镜检查固有的患者-切片-图像块层次结构来定义一个层次判别学习任务,该任务隐式地学习潜在诊断的特征。HiDisc使用一个自监督对比学习框架,其中基于数据层次结构中的共同祖先来定义正图像块对,并使用统一的图像块、切片和患者判别学习目标进行视觉SSL。我们使用两个生物医学显微镜数据集在两个视觉任务上对HiDisc视觉表征进行基准测试,并证明(1)HiDisc预训练在癌症诊断和基因突变预测方面优于当前最先进的自监督预训练方法,以及(2)HiDisc使用自然的图像块多样性学习高质量的视觉表征,而无需强大的数据增强。

相似文献

1
Hierarchical discriminative learning improves visual representations of biomedical microscopy.分层判别学习改善了生物医学显微镜的视觉表征。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:19798-19808. doi: 10.1109/cvpr52729.2023.01896. Epub 2023 Aug 22.

引用本文的文献

3
Super-resolution of biomedical volumes with 2D supervision.基于二维监督的生物医学体积超分辨率技术。
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6966-6977. doi: 10.1109/cvprw63382.2024.00690. Epub 2024 Sep 27.
4
Computational pathology: A survey review and the way forward.计算病理学:综述与未来发展方向
J Pathol Inform. 2024 Jan 14;15:100357. doi: 10.1016/j.jpi.2023.100357. eCollection 2024 Dec.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验