Jiang Cheng, Hou Xinhai, Kondepudi Akhil, Chowdury Asadur, Freudiger Christian W, Orringer Daniel A, Lee Honglak, Hollon Todd C
University of Michigan.
Invenio Imaging.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:19798-19808. doi: 10.1109/cvpr52729.2023.01896. Epub 2023 Aug 22.
Learning high-quality, self-supervised, visual representations is essential to advance the role of computer vision in biomedical microscopy and clinical medicine. Previous work has focused on self-supervised representation learning (SSL) methods developed for instance discrimination and applied them directly to image patches, or fields-of-view, sampled from gigapixel whole-slide images (WSIs) used for cancer diagnosis. However, this strategy is limited because it (1) assumes patches from the same patient are independent, (2) neglects the patient-slide-patch hierarchy of clinical biomedical microscopy, and (3) requires strong data augmentations that can degrade downstream performance. Importantly, sampled patches from WSIs of a patient's tumor are a diverse set of image examples that capture the same underlying cancer diagnosis. This motivated HiDisc, a data-driven method that leverages the inherent patient-slide-patch hierarchy of clinical biomedical microscopy to define a hierarchical discriminative learning task that implicitly learns features of the underlying diagnosis. HiDisc uses a self-supervised contrastive learning framework in which positive patch pairs are defined based on a common ancestry in the data hierarchy, and a unified patch, slide, and patient discriminative learning objective is used for visual SSL. We benchmark HiDisc visual representations on two vision tasks using two biomedical microscopy datasets, and demonstrate that (1) HiDisc pretraining outperforms current state-of-the-art self-supervised pretraining methods for cancer diagnosis and genetic mutation prediction, and (2) HiDisc learns high-quality visual representations using natural patch diversity without strong data augmentations.
学习高质量的自监督视觉表征对于提升计算机视觉在生物医学显微镜检查和临床医学中的作用至关重要。先前的工作主要集中在为实例判别开发的自监督表征学习(SSL)方法,并将其直接应用于从用于癌症诊断的千兆像素全切片图像(WSIs)中采样的图像块或视野。然而,这种策略存在局限性,因为它(1)假设来自同一患者的图像块是独立的,(2)忽略了临床生物医学显微镜检查中的患者-切片-图像块层次结构,以及(3)需要强大的数据增强,而这可能会降低下游性能。重要的是,从患者肿瘤的WSIs中采样的图像块是一组多样的图像示例,它们捕捉了相同的潜在癌症诊断。这促使了HiDisc的产生,这是一种数据驱动的方法,它利用临床生物医学显微镜检查固有的患者-切片-图像块层次结构来定义一个层次判别学习任务,该任务隐式地学习潜在诊断的特征。HiDisc使用一个自监督对比学习框架,其中基于数据层次结构中的共同祖先来定义正图像块对,并使用统一的图像块、切片和患者判别学习目标进行视觉SSL。我们使用两个生物医学显微镜数据集在两个视觉任务上对HiDisc视觉表征进行基准测试,并证明(1)HiDisc预训练在癌症诊断和基因突变预测方面优于当前最先进的自监督预训练方法,以及(2)HiDisc使用自然的图像块多样性学习高质量的视觉表征,而无需强大的数据增强。