Suppr超能文献

通过分子动力学、分子力学和密度泛函理论研究,对新冠病毒诱导的毛霉菌病中铁摄取蛋白进行计算靶向,以鉴定抑制剂。

Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies.

作者信息

Sen Manjima, Priyanka B M, Anusha D, Puneetha S, Setlur Anagha S, Karunakaran Chandrashekar, Tandur Amulya, Prashant C S, Niranjan Vidya

机构信息

Department of Public Health Dentistry, DAPM RV Dental College, Bangalore, 560078 India.

Department of Oral Medicine and Diagnostic Radiology, DAPM RV Dental College, Bangalore, 560078 India.

出版信息

In Silico Pharmacol. 2024 Sep 29;12(2):90. doi: 10.1007/s40203-024-00264-7. eCollection 2024.

Abstract

UNLABELLED

Mucormycosis is a concerning invasive fungal infection with difficult diagnosis, high mortality rates, and limited treatment options. Iron availability is crucial for fungal growth that causes this disease. This study aimed to computationally target iron uptake proteins in and to identify inhibitors, thereby halting fungal growth and intervening in mucormycosis pathogenesis. Seven important iron uptake proteins were identified, modeled, and validated using Ramachandran plots. An in-house antifungal library of ~ 15,401 compounds was screened in molecular docking studies with these proteins. The best small molecule-protein complexes were simulated at 100 ns using Maestro, Schrodinger. Toxicity predictions suggested all six molecules, identified as the best binding compounds to seven proteins, belonged to lower toxicity levels per GHS classification. A molecular mechanics GBSA study for all seven complexes indicated low standard deviations after calculating free binding energies every 10 ns of the 100 ns trajectory. Density functional theory via quantum mechanics approaches highlighted the HOMO, LUMO, and other properties of the six best-bound molecules, revealing their binding capabilities and behaviour. This study sheds light on the molecular mechanisms and protein-ligand interactions, providing a multi-dimensional view towards the use of FDBD01920, FDBD01923, and FDBD01848 as stable antifungal ligands.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s40203-024-00264-7.

摘要

未标记

毛霉病是一种令人担忧的侵袭性真菌感染,诊断困难,死亡率高,治疗选择有限。铁的可利用性对引发这种疾病的真菌生长至关重要。本研究旨在通过计算靶向[具体物种]中的铁摄取蛋白并鉴定抑制剂,从而阻止真菌生长并干预毛霉病发病机制。鉴定了七种重要的铁摄取蛋白,使用拉氏图对其进行建模和验证。在与这些蛋白的分子对接研究中筛选了一个约有15401种化合物的内部抗真菌文库。使用薛定谔公司的Maestro对最佳小分子 - 蛋白复合物进行了100纳秒的模拟。毒性预测表明,被确定为与七种蛋白结合最佳的所有六种分子,根据全球化学品统一分类制度属于较低毒性水平。对所有七种复合物进行的分子力学广义玻恩表面面积(GBSA)研究表明,在100纳秒轨迹中每10纳秒计算自由结合能后,标准偏差较低。通过量子力学方法的密度泛函理论突出了六种最佳结合分子的最高占据分子轨道(HOMO)、最低未占据分子轨道(LUMO)和其他性质,揭示了它们的结合能力和行为。本研究揭示了分子机制和蛋白 - 配体相互作用,为将FDBD01920、FDBD01923和FDBD01848用作稳定的抗真菌配体提供了多维度视角。

补充信息

在线版本包含可在10.1007/s40203 - 024 - 00264 - 7获取的补充材料。

相似文献

本文引用的文献

6
Efficient Exploration of Chemical Space with Docking and Deep Learning.运用对接和深度学习高效探索化学空间。
J Chem Theory Comput. 2021 Nov 9;17(11):7106-7119. doi: 10.1021/acs.jctc.1c00810. Epub 2021 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验