Suppr超能文献

用于在MRI上自动诊断退行性颈椎病和脊髓信号改变的深度学习模型。

Deep learning model for automated diagnosis of degenerative cervical spondylosis and altered spinal cord signal on MRI.

作者信息

Lee Aric, Wu Junran, Liu Changshuo, Makmur Andrew, Ting Yong Han, Muhamat Nor Faimee Erwan, Tan Loon Ying, Ong Wilson, Tan Wei Chuan, Lee You Jun, Huang Juncheng, Beh Joey Chan Yiing, Lim Desmond Shi Wei, Low Xi Zhen, Teo Ee Chin, Chan Yiong Huak, Lim Joshua Ian, Lin Shuxun, Tan Jiong Hao, Kumar Naresh, Ooi Beng Chin, Quek Swee Tian, Hallinan James Thomas Patrick Decourcy

机构信息

Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd 119074, Singapore.

Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive 117417, Singapore.

出版信息

Spine J. 2025 Feb;25(2):255-264. doi: 10.1016/j.spinee.2024.09.015. Epub 2024 Sep 30.

Abstract

BACKGROUND CONTEXT

A deep learning (DL) model for degenerative cervical spondylosis on MRI could enhance reporting consistency and efficiency, addressing a significant global health issue.

PURPOSE

Create a DL model to detect and classify cervical cord signal abnormalities, spinal canal and neural foraminal stenosis.

STUDY DESIGN/SETTING: Retrospective study conducted from January 2013 to July 2021, excluding cases with instrumentation.

PATIENT SAMPLE

Overall, 504 MRI cervical spines were analyzed (504 patients, mean=58 years±13.7[SD]; 202 women) with 454 for training (90%) and 50 (10%) for internal testing. In addition, 100 MRI cervical spines were available for external testing (100 patients, mean=60 years±13.0[SD];26 women).

OUTCOME MEASURES

Automated detection and classification of spinal canal stenosis, neural foraminal stenosis, and cord signal abnormality using the DL model. Recall(%), inter-rater agreement (Gwet's kappa), sensitivity, and specificity were calculated.

METHODS

Utilizing axial T2-weighted gradient echo and sagittal T2-weighted images, a transformer-based DL model was trained on data labeled by an experienced musculoskeletal radiologist (12 years of experience). Internal testing involved data labeled in consensus by 2 musculoskeletal radiologists (reference standard, both with 12-years-experience), 2 subspecialist radiologists, and 2 in-training radiologists. External testing was performed.

RESULTS

The DL model exhibited substantial agreement surpassing all readers in all classes for spinal canal (κ=0.78, p<.001 vs κ range=0.57-0.70 for readers) and neural foraminal stenosis (κ=0.80, p<.001 vs κ range=0.63-0.69 for readers) classification. The DL model's recall for cord signal abnormality (92.3%) was similar to all readers (range: 92.3-100.0%). Nearly perfect agreement was demonstrated for binary classification (grades 0/1 vs 2/3) (κ=0.95, p<.001 for spinal canal; κ=0.90, p<.001 for neural foramina). External testing showed substantial agreement using all classes (κ=0.76, p<.001 for spinal canal; κ=0.66, p<.001 for neural foramina) and high recall for cord signal abnormality (91.9%). The DL model demonstrated high sensitivities (range:83.7%-92.4%) and specificities (range:87.8%-98.3%) on both internal and external datasets for spinal canal and neural foramina classification.

CONCLUSIONS

Our DL model for degenerative cervical spondylosis on MRI showed good performance, demonstrating substantial agreement with the reference standard. This tool could assist radiologists in improving the efficiency and consistency of MRI cervical spondylosis assessments in clinical practice.

摘要

背景

用于磁共振成像(MRI)诊断退行性颈椎病的深度学习(DL)模型可提高报告的一致性和效率,这是一个重大的全球健康问题。

目的

创建一个DL模型,用于检测和分类颈髓信号异常、椎管和神经孔狭窄。

研究设计/地点:2013年1月至2021年7月进行的回顾性研究,排除有内固定的病例。

患者样本

共分析了504例颈椎MRI(504例患者,平均年龄=58岁±13.7[标准差];202名女性),其中454例用于训练(90%),50例(10%)用于内部测试。此外,有100例颈椎MRI可用于外部测试(100例患者,平均年龄=60岁±13.0[标准差];26名女性)。

观察指标

使用DL模型对椎管狭窄、神经孔狭窄和脊髓信号异常进行自动检测和分类。计算召回率(%)、评分者间一致性(格维特kappa系数)、敏感性和特异性。

方法

利用轴向T2加权梯度回波和矢状面T2加权图像,在一名经验丰富的肌肉骨骼放射科医生(12年经验)标注的数据上训练基于Transformer的DL模型。内部测试涉及由2名肌肉骨骼放射科医生(参考标准,均有12年经验)、2名专科放射科医生和2名实习放射科医生共同标注的数据。进行了外部测试。

结果

DL模型在椎管(κ=0.78,p<0.001,读者κ范围=0.57-0.70)和神经孔狭窄(κ=0.80,p<0.001,读者κ范围=0.63-0.69)分类的所有类别中均表现出高于所有读者的高度一致性。DL模型对脊髓信号异常的召回率(92.3%)与所有读者相似(范围:92.3%-100.0%)。二元分类(0/1级与2/3级)显示出近乎完美的一致性(椎管κ=0.95,p<0.001;神经孔κ=0.90,p<0.001)。外部测试显示在所有类别中均有高度一致性(椎管κ=0.76,p<0.001;神经孔κ=0.66,p<0.001),对脊髓信号异常的召回率较高(91.9%)。DL模型在内部和外部数据集上对椎管和神经孔分类的敏感性(范围:83.7%-92.4%)和特异性(范围:87.8%-98.3%)均较高。

结论

我们的用于MRI诊断退行性颈椎病的DL模型表现良好,与参考标准显示出高度一致性。该工具可帮助放射科医生提高临床实践中颈椎MRI评估的效率和一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验