Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
J Phys Chem B. 2024 Oct 17;128(41):10043-10050. doi: 10.1021/acs.jpcb.4c04140. Epub 2024 Oct 2.
Molecular dynamics simulations have been remarkably effective for observing and analyzing structures and dynamics of proteins, with longer trajectories being computed every day. Still, often, relevant time scales are not observed. Adequately analyzing the generated trajectories can highlight the interesting areas within a protein such as mutation sites or allosteric hotspots, which might foreshadow dynamics untouched by the simulations. We employ a physics-based protein network and propose that such a network can adequately analyze the protein dynamics. The analysis is conducted on simulations of cathepsin G and neutrophil elastase, which are remarkably similar but with different specificities. However, a single mutation in cathepsin G recovers the specificity of neutrophil elastase. The physics-based network built on the interactions between residues instead of the distances can pinpoint the active triad in the proteins studied. Overall, the network seems to capture the structural behavior better than purely distance-based networks.
分子动力学模拟在观察和分析蛋白质的结构和动态方面非常有效,每天都在计算更长的轨迹。尽管如此,相关的时间尺度往往无法被观察到。对生成轨迹进行充分分析可以突出蛋白质内部的有趣区域,如突变位点或别构热点,这些区域可能预示着模拟无法触及的动力学。我们采用基于物理的蛋白质网络,并提出这样的网络可以充分分析蛋白质动力学。该分析是在组织蛋白酶 G 和中性粒细胞弹性蛋白酶的模拟中进行的,这两种蛋白质非常相似,但特异性不同。然而,组织蛋白酶 G 中的单个突变恢复了中性粒细胞弹性蛋白酶的特异性。基于残基相互作用而不是距离构建的基于物理的网络可以确定所研究蛋白质中的活性三联体。总的来说,该网络似乎比基于距离的网络更能捕捉结构行为。