Suppr超能文献

灵长类动物社会知觉的身体神经编码。

Neural Encoding of Bodies for Primate Social Perception.

机构信息

The Neuro, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada.

Department of Neuroscience, KU Leuven, Leuven 3000, Belgium.

出版信息

J Neurosci. 2024 Oct 2;44(40):e1221242024. doi: 10.1523/JNEUROSCI.1221-24.2024.

Abstract

Primates, as social beings, have evolved complex brain mechanisms to navigate intricate social environments. This review explores the neural bases of body perception in both human and nonhuman primates, emphasizing the processing of social signals conveyed by body postures, movements, and interactions. Early studies identified selective neural responses to body stimuli in macaques, particularly within and ventral to the superior temporal sulcus (STS). These regions, known as body patches, represent visual features that are present in bodies but do not appear to be semantic body detectors. They provide information about posture and viewpoint of the body. Recent research using dynamic stimuli has expanded the understanding of the body-selective network, highlighting its complexity and the interplay between static and dynamic processing. In humans, body-selective areas such as the extrastriate body area (EBA) and fusiform body area (FBA) have been implicated in the perception of bodies and their interactions. Moreover, studies on social interactions reveal that regions in the human STS are also tuned to the perception of dyadic interactions, suggesting a specialized social lateral pathway. Computational work developed models of body recognition and social interaction, providing insights into the underlying neural mechanisms. Despite advances, significant gaps remain in understanding the neural mechanisms of body perception and social interaction. Overall, this review underscores the importance of integrating findings across species to comprehensively understand the neural foundations of body perception and the interaction between computational modeling and neural recording.

摘要

灵长类动物作为社会性生物,进化出了复杂的大脑机制来应对复杂的社会环境。本综述探讨了人类和非人类灵长类动物的身体感知的神经基础,强调了对身体姿势、运动和相互作用所传达的社会信号的处理。早期研究在猕猴中鉴定出了对身体刺激的选择性神经反应,特别是在颞上沟(STS)内部和腹侧。这些被称为身体贴片的区域代表了存在于身体中的视觉特征,但似乎不是语义身体探测器。它们提供了关于身体姿势和视角的信息。最近使用动态刺激的研究扩展了对身体选择性网络的理解,突出了其复杂性以及静态和动态处理之间的相互作用。在人类中,身体选择性区域,如外纹状体身体区域(EBA)和梭状回身体区域(FBA),被认为参与了对身体及其相互作用的感知。此外,对社会互动的研究表明,人类 STS 中的区域也对二元互动的感知进行了调整,这表明存在专门的社会侧通路。计算工作开发了身体识别和社会互动的模型,为理解潜在的神经机制提供了见解。尽管取得了进展,但在理解身体感知和社会互动的神经机制方面仍存在重大差距。总的来说,本综述强调了整合跨物种研究结果的重要性,以全面理解身体感知和计算建模与神经记录之间的交互的神经基础。

相似文献

1
Neural Encoding of Bodies for Primate Social Perception.灵长类动物社会知觉的身体神经编码。
J Neurosci. 2024 Oct 2;44(40):e1221242024. doi: 10.1523/JNEUROSCI.1221-24.2024.
4
Contorted and ordinary body postures in the human brain.扭曲和普通的身体姿势在人类大脑中。
Exp Brain Res. 2010 Jul;204(3):397-407. doi: 10.1007/s00221-009-2093-x. Epub 2009 Nov 27.
6
Dyadic interaction processing in the posterior temporal cortex.双侧颞后皮质的对偶互动加工。
Neuroimage. 2019 Sep;198:296-302. doi: 10.1016/j.neuroimage.2019.05.027. Epub 2019 May 14.
8
The neural coding of face and body orientation in occipitotemporal cortex.枕颞叶皮质中面部和身体方位的神经编码
Neuroimage. 2022 Feb 1;246:118783. doi: 10.1016/j.neuroimage.2021.118783. Epub 2021 Dec 5.
9
The Representation of Two-Body Shapes in the Human Visual Cortex.人体视觉皮层中对二体形状的表示。
J Neurosci. 2020 Jan 22;40(4):852-863. doi: 10.1523/JNEUROSCI.1378-19.2019. Epub 2019 Dec 4.

本文引用的文献

2
What is abstract about seeing social interactions?看待社会互动的抽象之处是什么?
Trends Cogn Sci. 2024 May;28(5):390-391. doi: 10.1016/j.tics.2024.02.004. Epub 2024 Apr 16.
3
Abstract social interaction representations along the lateral pathway.沿外侧通路的抽象社会互动表征。
Trends Cogn Sci. 2024 May;28(5):392-393. doi: 10.1016/j.tics.2024.03.007. Epub 2024 Apr 16.
7
Perceptual encoding of emotions in interactive bodily expressions.交互式身体表达中情绪的感知编码。
iScience. 2023 Nov 28;27(1):108548. doi: 10.1016/j.isci.2023.108548. eCollection 2024 Jan 19.
8
Category-Selective Representation of Relationships in the Visual Cortex.视皮层中关系的类别选择性表示。
J Neurosci. 2024 Jan 31;44(5):e0250232023. doi: 10.1523/JNEUROSCI.0250-23.2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验