Suppr超能文献

人类偏见与卷积神经网络在基于卫星的贫困地图绘制中的卓越洞察力。

Human bias and CNNs' superior insights in satellite based poverty mapping.

作者信息

Sarmadi Hamid, Wahab Ibrahim, Hall Ola, Rögnvaldsson Thorsteinn, Ohlsson Mattias

机构信息

Centre for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden.

Department of Human Geography, Lund University, Lund, Sweden.

出版信息

Sci Rep. 2024 Oct 2;14(1):22878. doi: 10.1038/s41598-024-74150-9.

Abstract

Satellite imagery is a potent tool for estimating human wealth and poverty, especially in regions lacking reliable data. This study compares a range of poverty estimation approaches from satellite images, spanning from expert-based to fully machine learning-based methodologies. Human experts ranked clusters from the Tanzania DHS survey using high-resolution satellite images. Then expert-defined features were utilized in a machine learning algorithm to estimate poverty. An explainability method was applied to assess the importance and interaction of these features in poverty prediction. Additionally, a convolutional neural network (CNN) was employed to estimate poverty from medium-resolution satellite images of the same locations. Our analysis indicates that increased human involvement in poverty estimation diminishes accuracy compared to machine learning involvement, exemplified with the case of Tanzania. Expert defined features exhibited significant overlap and poor interaction when used together in a classifier. Conversely, the CNN-based approach outperformed human experts, demonstrating superior predictive capability with medium-resolution images. These findings highlight the importance of leveraging machine learning explainability methods to identify predictive elements that may be overlooked by human experts. This study advocates for the integration of emerging technologies with traditional methodologies to optimize data collection and analysis of poverty and welfare.

摘要

卫星图像是估算人类财富和贫困状况的有力工具,在缺乏可靠数据的地区尤为如此。本研究比较了一系列基于卫星图像的贫困估算方法,涵盖从基于专家的方法到完全基于机器学习的方法。人类专家利用高分辨率卫星图像对坦桑尼亚人口与健康调查(DHS)中的聚类进行排名。然后,将专家定义的特征应用于机器学习算法以估算贫困状况。应用一种可解释性方法来评估这些特征在贫困预测中的重要性和相互作用。此外,还采用了卷积神经网络(CNN)从相同地点的中分辨率卫星图像估算贫困状况。我们的分析表明,与机器学习参与相比,增加人类在贫困估算中的参与会降低准确性,坦桑尼亚的案例就证明了这一点。专家定义的特征在分类器中一起使用时表现出显著的重叠且相互作用不佳。相反,基于CNN的方法优于人类专家,在中分辨率图像上展现出卓越的预测能力。这些发现凸显了利用机器学习可解释性方法来识别可能被人类专家忽视的预测要素的重要性。本研究主张将新兴技术与传统方法相结合以优化贫困和福利的数据收集与分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验