Suppr超能文献

用于检测微机械肌电信号的高灵敏度加速度传感器及用于帕金森病分类的深度学习方法。

High-sensitivity acceleration sensor detecting micro-mechanomyogram and deep learning approach for parkinson's disease classification.

作者信息

Quan Jingyu, Uchitomi Hirotaka, Shigeyama Ryo, Gao Chenguang, Ogata Taiki, Inaba Akira, Orimo Satoshi, Miyake Yoshihiro

机构信息

Department of Computer Science, Tokyo Institute of Technology, Tokyo, 226-8502, Japan.

Department of Neurology, Kanto Central Hospital, Tokyo, 158-8531, Japan.

出版信息

Sci Rep. 2024 Oct 3;14(1):22941. doi: 10.1038/s41598-024-74526-x.

Abstract

High-sensitivity acceleration sensors have been independently developed by our research group to detect vibrations that are > 10 dB smaller than those detected by conventional commercial sensors. This study is the first to measure high-frequency micro-vibrations in muscle fibers, termed micro-mechanomyogram (MMG) in patients with Parkinson's disease (PwPD) using a high-sensitivity acceleration sensor. We specifically measured the extensor pollicis brevis muscle at the base of the thumb in PwPD and healthy controls (HC) and detected not only low-frequency MMG (< 15 Hz) but also micro-MMG (≥ 15 Hz), which was preciously undetectable using commercial acceleration sensors. Analysis revealed remarkable differences in the frequency characteristics of micro-MMG between PwPD and HC. Specifically, during muscle power output, the low-frequency MMG energy was greater in PwPD than in HC, while the micro-MMG energy was smaller in PwPD compared to HC. These results suggest that micro-MMG detected by the high-sensitivity acceleration sensor provides crucial information for distinguishing between PwPD and HC. Moreover, a deep learning model trained on both low-frequency MMG and micro-MMG achieved a high accuracy (92.19%) in classifying PwPD and HC, demonstrating the potential for a diagnostic system for PwPD using micro-MMG.

摘要

我们的研究小组自主研发了高灵敏度加速度传感器,用于检测比传统商用传感器检测到的振动小10分贝以上的振动。本研究首次使用高灵敏度加速度传感器测量帕金森病患者(PwPD)肌肉纤维中的高频微振动,即微机械肌电图(MMG)。我们特别测量了PwPD患者和健康对照者(HC)拇指根部的拇短伸肌,不仅检测到了低频MMG(<15Hz),还检测到了微MMG(≥15Hz),而使用商用加速度传感器此前无法检测到微MMG。分析显示,PwPD患者和HC患者的微MMG频率特征存在显著差异。具体而言,在肌肉力量输出期间,PwPD患者的低频MMG能量高于HC患者,而PwPD患者的微MMG能量低于HC患者。这些结果表明,高灵敏度加速度传感器检测到的微MMG为区分PwPD患者和HC患者提供了关键信息。此外,基于低频MMG和微MMG训练的深度学习模型在区分PwPD患者和HC患者方面达到了很高的准确率(92.19%),证明了使用微MMG的PwPD诊断系统的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0843/11447219/b13ebb476904/41598_2024_74526_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验