Suppr超能文献

交叉验证技术的选择对基于机器学习的诊断应用结果的影响。

Impact of the Choice of Cross-Validation Techniques on the Results of Machine Learning-Based Diagnostic Applications.

作者信息

Tougui Ilias, Jilbab Abdelilah, Mhamdi Jamal El

机构信息

Electronic Systems Sensors and Nanobiotechnologies (E2SN), ENSAM, Mohammed V University in Rabat, Morocco.

出版信息

Healthc Inform Res. 2021 Jul;27(3):189-199. doi: 10.4258/hir.2021.27.3.189. Epub 2021 Jul 31.

Abstract

OBJECTIVE

With advances in data availability and computing capabilities, artificial intelligence and machine learning technologies have evolved rapidly in recent years. Researchers have taken advantage of these developments in healthcare informatics and created reliable tools to predict or classify diseases using machine learning-based algorithms. To correctly quantify the performance of those algorithms, the standard approach is to use cross-validation, where the algorithm is trained on a training set, and its performance is measured on a validation set. Both datasets should be subject-independent to simulate the expected behavior of a clinical study. This study compares two cross-validation strategies, the subject-wise and the record-wise techniques; the subject-wise strategy correctly mimics the process of a clinical study, while the record-wise strategy does not.

METHODS

We started by creating a dataset of smartphone audio recordings of subjects diagnosed with and without Parkinson's disease. This dataset was then divided into training and holdout sets using subject-wise and the record-wise divisions. The training set was used to measure the performance of two classifiers (support vector machine and random forest) to compare six cross-validation techniques that simulated either the subject-wise process or the record-wise process. The holdout set was used to calculate the true error of the classifiers.

RESULTS

The record-wise division and the record-wise cross-validation techniques overestimated the performance of the classifiers and underestimated the classification error.

CONCLUSIONS

In a diagnostic scenario, the subject-wise technique is the proper way of estimating a model's performance, and record-wise techniques should be avoided.

摘要

目的

随着数据可用性和计算能力的提高,近年来人工智能和机器学习技术发展迅速。研究人员利用了医疗保健信息学中的这些进展,并创建了可靠的工具,使用基于机器学习的算法来预测或分类疾病。为了正确量化这些算法的性能,标准方法是使用交叉验证,其中算法在训练集上进行训练,并在验证集上测量其性能。两个数据集都应与受试者无关,以模拟临床研究的预期行为。本研究比较了两种交叉验证策略,即受试者方式和记录方式;受试者方式策略正确地模拟了临床研究的过程,而记录方式策略则不然。

方法

我们首先创建了一个智能手机音频记录数据集,该数据集包含被诊断患有和未患有帕金森病的受试者。然后使用受试者方式和记录方式划分将该数据集分为训练集和保留集。训练集用于测量两个分类器(支持向量机和随机森林)的性能,以比较六种模拟受试者方式过程或记录方式过程的交叉验证技术。保留集用于计算分类器的真实误差。

结果

记录方式划分和记录方式交叉验证技术高估了分类器的性能,低估了分类误差。

结论

在诊断场景中,受试者方式技术是评估模型性能的正确方法,应避免使用记录方式技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5647/8369053/4689d53862bc/hir-27-3-189f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验