Suppr超能文献

使用 vcfdist 联合基准小型和结构变异调用。

Jointly benchmarking small and structural variant calls with vcfdist.

机构信息

Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA.

National Institute of Standards and Technology, Gaithersburg, Maryland, USA.

出版信息

Genome Biol. 2024 Oct 2;25(1):253. doi: 10.1186/s13059-024-03394-5.

Abstract

In this work, we extend vcfdist to be the first variant call benchmarking tool to jointly evaluate phased single-nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs) for the whole genome. First, we find that a joint evaluation of small and structural variants uniformly reduces measured errors for SNPs (- 28.9%), INDELs (- 19.3%), and SVs (- 52.4%) across three datasets. vcfdist also corrects a common flaw in phasing evaluations, reducing measured flip errors by over 50%. Lastly, we show that vcfdist is more accurate than previously published works and on par with the newest approaches while providing improved result interpretability.

摘要

在这项工作中,我们将 vcfdist 扩展为第一个变体调用基准测试工具,以联合评估全基因组的相位单核苷酸多态性(SNP)、小插入/缺失(INDEL)和结构变异(SV)。首先,我们发现,对小变异和结构变异进行联合评估,可统一降低三个数据集上 SNP(-28.9%)、INDEL(-19.3%)和 SV(-52.4%)的测量误差。vcfdist 还纠正了相位评估中的一个常见缺陷,将测量的翻转错误减少了 50%以上。最后,我们表明,vcfdist 比以前的工作更准确,与最新的方法相当,同时提供了更好的结果可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2816/11446017/131a6edb4f5c/13059_2024_3394_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验