Suppr超能文献

改良 Berkeley 红色传感器检测跨膜电位的灵敏度提高。

Improved Sensitivity in a Modified Berkeley Red Sensor of Transmembrane Potential.

机构信息

Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.

Department of Molecular & Cell Biology, University of California, Berkeley, California 94720-1460, United States.

出版信息

ACS Chem Biol. 2024 Oct 18;19(10):2214-2219. doi: 10.1021/acschembio.4c00442. Epub 2024 Oct 2.

Abstract

Voltage imaging is an important complement to traditional methods for probing cellular physiology, such as electrode-based patch clamp techniques. Unlike the related Ca imaging, voltage imaging provides a direct visualization of bioelectricity changes. We have been exploring the use of sulfonated silicon rhodamine dyes (Berkeley Red Sensor of Transmembrane potential, BeRST) for voltage imaging. In this study, we explore the effect of converting BeRST to diEt BeRST, by replacing the dimethyl aniline of BeRST with a diethyl aniline group. The new dye, diEt BeRST, has a voltage sensitivity of 40% Δ/ per 100 mV, a 33% increase compared to the original BeRST dye, which has a sensitivity of 30% Δ/ per 100 mV. In neurons, the cellular brightness of diEt BeRST is about 20% as bright as that of BeRST, which may be due to the lower solubility of diEt BeRST (300 μM) compared to that of BeRST (800 μM). Despite this lower cellular brightness, diEt BeRST is able to record spontaneous and evoked action potentials from multiple neurons simultaneously and in single trials. Far-red excitation and emission profiles enable diEt BeRST to be used alongside existing fluorescent indicators of cellular physiology, like Ca-sensitive Oregon Green BAPTA. In hippocampal neurons, simultaneous voltage and Ca imaging reveals neuronal spiking patterns and frequencies that cannot be resolved with traditional Ca imaging methods. This study represents a first step toward describing the structural features that define voltage sensitivity and brightness in silicon rhodamine-based BeRST indicators.

摘要

电压成像技术是探测细胞生理学的传统方法的重要补充,例如基于电极的膜片钳技术。与相关的 Ca 成像不同,电压成像提供了对生物电变化的直接可视化。我们一直在探索使用磺化硅罗丹明染料(Berkeley Red 跨膜电位传感器,BeRST)进行电压成像。在这项研究中,我们通过用二乙苯胺基团取代 BeRST 的二甲苯胺来探索将 BeRST 转化为二乙 BeRST 的效果。新染料二乙 BeRST 的电压灵敏度为 40%Δ/每 100 mV,比原始 BeRST 染料的 30%Δ/每 100 mV 增加了 33%。在神经元中,二乙 BeRST 的细胞亮度约为 BeRST 的 20%,这可能是由于二乙 BeRST 的溶解度(300 μM)低于 BeRST(800 μM)。尽管细胞亮度较低,但二乙 BeRST 仍能够在单个试验中同时记录来自多个神经元的自发和诱发动作电位。远红色激发和发射谱使二乙 BeRST 能够与细胞生理学的现有荧光指示剂(如 Ca 敏感的 Oregon Green BAPTA)一起使用。在海马神经元中,同时进行电压和 Ca 成像揭示了传统 Ca 成像方法无法分辨的神经元尖峰模式和频率。这项研究代表了描述硅罗丹明基 BeRST 指示剂的电压灵敏度和亮度的结构特征的第一步。

相似文献

2
A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing.用于光学电压传感的光稳定硅罗丹明平台。
J Am Chem Soc. 2015 Aug 26;137(33):10767-76. doi: 10.1021/jacs.5b06644. Epub 2015 Aug 13.
4
Monitoring neuronal activity with voltage-sensitive fluorophores.使用电压敏感染料监测神经元活动。
Methods Enzymol. 2020;640:185-204. doi: 10.1016/bs.mie.2020.04.028. Epub 2020 Jun 1.
6
Isomerically Pure Tetramethylrhodamine Voltage Reporters.具有手性纯的四甲基罗丹明电压报告染料。
J Am Chem Soc. 2016 Jul 27;138(29):9085-8. doi: 10.1021/jacs.6b05672. Epub 2016 Jul 18.
8
A red-emitting carborhodamine for monitoring and measuring membrane potential.用于监测和测量膜电位的红色发射羰花青染料。
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2315264121. doi: 10.1073/pnas.2315264121. Epub 2024 Mar 29.
9
Two-Photon Voltage Imaging with Sulfonated Rhodamine Dyes.使用磺化罗丹明染料的双光子电压成像
ACS Cent Sci. 2018 Oct 24;4(10):1371-1378. doi: 10.1021/acscentsci.8b00422. Epub 2018 Oct 8.

本文引用的文献

1
Near-infrared voltage-sensitive dyes based on chromene donor.基于色烯供体的近红外电压敏感染料。
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2305093120. doi: 10.1073/pnas.2305093120. Epub 2023 Aug 14.
6
Coupling-dependent metabolic ultradian rhythms in confluent cells.融合细胞中依赖于偶联的代谢超日周期节律。
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2211142119. doi: 10.1073/pnas.2211142119. Epub 2022 Nov 2.
7
A long-wavelength xanthene dye for photoacoustic imaging.一种用于光声成像的长波长呫吨染料。
Chem Commun (Camb). 2022 Oct 25;58(85):11941-11944. doi: 10.1039/d2cc03947h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验