J Am Chem Soc. 2021 Feb 10;143(5):2304-2314. doi: 10.1021/jacs.0c11382. Epub 2021 Jan 27.
The development of fluorescent dyes that emit and absorb light at wavelengths greater than 700 nm and that respond to biochemical and biophysical events in living systems remains an outstanding challenge for noninvasive optical imaging. Here, we report the design, synthesis, and application of near-infrared (NIR)-absorbing and -emitting optical voltmeter based on a sulfonated, phosphine-oxide (po) rhodamine for voltage imaging in intact retinas. We find that po-rhodamine based voltage reporters, or poRhoVRs, display NIR excitation and emission profiles at greater than 700 nm, show a range of voltage sensitivities (13 to 43% ΔF/F per 100 mV in HEK cells), and can be combined with existing optical sensors, like Ca-sensitive fluorescent proteins (GCaMP), and actuators, like light-activated opsins ChannelRhodopsin-2 (ChR2). Simultaneous voltage and Ca imaging reveals differences in activity dynamics in rat hippocampal neurons, and pairing poRhoVR with blue-light based ChR2 affords all-optical electrophysiology. In retinas isolated from a mouse model of retinal degeneration, poRhoVR, together with GCaMP-based Ca imaging and traditional multielectrode array (MEA) recording, can provide a comprehensive physiological activity profile of neuronal activity, revealing differences in voltage and Ca dynamics within hyperactive networks of the mouse retina. Taken together, these experiments establish that poRhoVR will open new horizons in optical interrogation of cellular and neuronal physiology in intact systems.
开发能在 700nm 以上波长处发射和吸收光并能响应活体内生化和生物物理事件的荧光染料,对于非侵入性光学成象仍是一个巨大的挑战。在这里,我们报告了一种基于磺酸化、氧化膦(po)罗丹明的近红外(NIR)吸收和发射光学电压表的设计、合成和应用,用于完整视网膜中的电压成像。我们发现,po-罗丹明基电压报告器(poRhoVR)在 700nm 以上显示出近红外激发和发射谱,具有多种电压灵敏度(在 HEK 细胞中每 100mV 为 13%至 43%ΔF/F),并且可以与现有的光学传感器,如 Ca 敏感荧光蛋白(GCaMP)和执行器,如光激活视蛋白通道视紫红质-2(ChR2)相结合。同时进行电压和 Ca 成像揭示了大鼠海马神经元活动动力学的差异,将 poRhoVR 与基于蓝光的 ChR2 配对可实现全光学电生理学。在视网膜变性小鼠模型分离的视网膜中,poRhoVR 与基于 GCaMP 的 Ca 成像和传统的多电极阵列(MEA)记录相结合,可以提供神经元活动的综合生理活性谱,揭示小鼠视网膜过度活跃网络中电压和 Ca 动力学的差异。总的来说,这些实验表明,poRhoVR 将在完整系统中对细胞和神经元生理学的光学检测中开辟新的视野。