Suppr超能文献

近红外吸收型膦氧化物罗丹明电压报告染料的电压成像。

Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter.

出版信息

J Am Chem Soc. 2021 Feb 10;143(5):2304-2314. doi: 10.1021/jacs.0c11382. Epub 2021 Jan 27.

Abstract

The development of fluorescent dyes that emit and absorb light at wavelengths greater than 700 nm and that respond to biochemical and biophysical events in living systems remains an outstanding challenge for noninvasive optical imaging. Here, we report the design, synthesis, and application of near-infrared (NIR)-absorbing and -emitting optical voltmeter based on a sulfonated, phosphine-oxide (po) rhodamine for voltage imaging in intact retinas. We find that po-rhodamine based voltage reporters, or poRhoVRs, display NIR excitation and emission profiles at greater than 700 nm, show a range of voltage sensitivities (13 to 43% ΔF/F per 100 mV in HEK cells), and can be combined with existing optical sensors, like Ca-sensitive fluorescent proteins (GCaMP), and actuators, like light-activated opsins ChannelRhodopsin-2 (ChR2). Simultaneous voltage and Ca imaging reveals differences in activity dynamics in rat hippocampal neurons, and pairing poRhoVR with blue-light based ChR2 affords all-optical electrophysiology. In retinas isolated from a mouse model of retinal degeneration, poRhoVR, together with GCaMP-based Ca imaging and traditional multielectrode array (MEA) recording, can provide a comprehensive physiological activity profile of neuronal activity, revealing differences in voltage and Ca dynamics within hyperactive networks of the mouse retina. Taken together, these experiments establish that poRhoVR will open new horizons in optical interrogation of cellular and neuronal physiology in intact systems.

摘要

开发能在 700nm 以上波长处发射和吸收光并能响应活体内生化和生物物理事件的荧光染料,对于非侵入性光学成象仍是一个巨大的挑战。在这里,我们报告了一种基于磺酸化、氧化膦(po)罗丹明的近红外(NIR)吸收和发射光学电压表的设计、合成和应用,用于完整视网膜中的电压成像。我们发现,po-罗丹明基电压报告器(poRhoVR)在 700nm 以上显示出近红外激发和发射谱,具有多种电压灵敏度(在 HEK 细胞中每 100mV 为 13%至 43%ΔF/F),并且可以与现有的光学传感器,如 Ca 敏感荧光蛋白(GCaMP)和执行器,如光激活视蛋白通道视紫红质-2(ChR2)相结合。同时进行电压和 Ca 成像揭示了大鼠海马神经元活动动力学的差异,将 poRhoVR 与基于蓝光的 ChR2 配对可实现全光学电生理学。在视网膜变性小鼠模型分离的视网膜中,poRhoVR 与基于 GCaMP 的 Ca 成像和传统的多电极阵列(MEA)记录相结合,可以提供神经元活动的综合生理活性谱,揭示小鼠视网膜过度活跃网络中电压和 Ca 动力学的差异。总的来说,这些实验表明,poRhoVR 将在完整系统中对细胞和神经元生理学的光学检测中开辟新的视野。

相似文献

1
Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter.
J Am Chem Soc. 2021 Feb 10;143(5):2304-2314. doi: 10.1021/jacs.0c11382. Epub 2021 Jan 27.
2
A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing.
J Am Chem Soc. 2015 Aug 26;137(33):10767-76. doi: 10.1021/jacs.5b06644. Epub 2015 Aug 13.
3
Improved Sensitivity in a Modified Berkeley Red Sensor of Transmembrane Potential.
ACS Chem Biol. 2024 Oct 18;19(10):2214-2219. doi: 10.1021/acschembio.4c00442. Epub 2024 Oct 2.
4
Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
Biomaterials. 2013 Dec;34(37):9566-71. doi: 10.1016/j.biomaterials.2013.08.081. Epub 2013 Sep 17.
5
Isomerically Pure Tetramethylrhodamine Voltage Reporters.
J Am Chem Soc. 2016 Jul 27;138(29):9085-8. doi: 10.1021/jacs.6b05672. Epub 2016 Jul 18.
6
Sulfone Rhodamines for Voltage Imaging.
Chem Asian J. 2022 Dec 14;17(24):e202200906. doi: 10.1002/asia.202200906. Epub 2022 Nov 10.
7
Two-Photon Voltage Imaging with Sulfonated Rhodamine Dyes.
ACS Cent Sci. 2018 Oct 24;4(10):1371-1378. doi: 10.1021/acscentsci.8b00422. Epub 2018 Oct 8.
8
Covalently Tethered Rhodamine Voltage Reporters for High Speed Functional Imaging in Brain Tissue.
J Am Chem Soc. 2020 Jan 8;142(1):614-622. doi: 10.1021/jacs.9b12265. Epub 2019 Dec 26.
9
Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo.
Chem Commun (Camb). 2020 Feb 25;56(16):2455-2458. doi: 10.1039/c9cc09666c.
10
Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes.
J Am Chem Soc. 2015 Apr 15;137(14):4759-65. doi: 10.1021/jacs.5b00246. Epub 2015 Apr 6.

引用本文的文献

1
Seeing the Spikes: The Future of Targetable Synthetic Voltage Sensors.
ACS Chem Neurosci. 2025 Mar 5;16(5):761-771. doi: 10.1021/acschemneuro.4c00849. Epub 2025 Feb 13.
2
Ratio-based indicators for cytosolic Ca with visible light excitation.
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2410436122. doi: 10.1073/pnas.2410436122. Epub 2025 Feb 12.
5
Phosphineoxide-Chelated Europium(III) Nanoparticles for Ceftriaxone Detection.
Nanomaterials (Basel). 2023 Jan 21;13(3):438. doi: 10.3390/nano13030438.
6
Sulfone Rhodamines for Voltage Imaging.
Chem Asian J. 2022 Dec 14;17(24):e202200906. doi: 10.1002/asia.202200906. Epub 2022 Nov 10.
7
A long-wavelength xanthene dye for photoacoustic imaging.
Chem Commun (Camb). 2022 Oct 25;58(85):11941-11944. doi: 10.1039/d2cc03947h.
8
Chemical Targeting of Rhodol Voltage-Sensitive Dyes to Dopaminergic Neurons.
ACS Chem Neurosci. 2022 Apr 20;13(8):1251-1262. doi: 10.1021/acschemneuro.1c00862. Epub 2022 Apr 10.
9
Advances and prospects of rhodopsin-based optogenetics in plant research.
Plant Physiol. 2021 Oct 5;187(2):572-589. doi: 10.1093/plphys/kiab338.

本文引用的文献

2
Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.
Nat Methods. 2020 Mar;17(3):287-290. doi: 10.1038/s41592-020-0762-7. Epub 2020 Mar 2.
3
Covalently Tethered Rhodamine Voltage Reporters for High Speed Functional Imaging in Brain Tissue.
J Am Chem Soc. 2020 Jan 8;142(1):614-622. doi: 10.1021/jacs.9b12265. Epub 2019 Dec 26.
4
Wide. Fast. Deep: Recent Advances in Multiphoton Microscopy of Neuronal Activity.
J Neurosci. 2019 Nov 13;39(46):9042-9052. doi: 10.1523/JNEUROSCI.1527-18.2019. Epub 2019 Oct 2.
5
Kilohertz frame-rate two-photon tomography.
Nat Methods. 2019 Aug;16(8):778-786. doi: 10.1038/s41592-019-0493-9. Epub 2019 Jul 29.
6
Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics.
Cell. 2019 May 16;177(5):1346-1360.e24. doi: 10.1016/j.cell.2019.04.007. Epub 2019 May 9.
7
Synthesis of Sulfonated Carbofluoresceins for Voltage Imaging.
J Am Chem Soc. 2019 Apr 24;141(16):6631-6638. doi: 10.1021/jacs.9b01261. Epub 2019 Apr 12.
8
Retinoic Acid Induces Hyperactivity, and Blocking Its Receptor Unmasks Light Responses and Augments Vision in Retinal Degeneration.
Neuron. 2019 May 8;102(3):574-586.e5. doi: 10.1016/j.neuron.2019.02.015. Epub 2019 Mar 12.
9
A Phosphinate-Containing Fluorophore Capable of Selectively Inducing Apoptosis in Cancer Cells.
Chembiochem. 2019 Jul 1;20(13):1712-1716. doi: 10.1002/cbic.201800811. Epub 2019 May 3.
10
A genetically encoded near-infrared fluorescent calcium ion indicator.
Nat Methods. 2019 Feb;16(2):171-174. doi: 10.1038/s41592-018-0294-6. Epub 2019 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验