Department of Chemistry, University of California, Berkeley, CA 94720.
Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2315264121. doi: 10.1073/pnas.2315264121. Epub 2024 Mar 29.
Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity. However, it would be useful to be able to not only monitor changes but also measure values of membrane potentials. This study discloses a fluorescent indicator which can address both. We describe the synthesis of a sulfonated tetramethyl carborhodamine fluorophore. When this carborhodamine is conjugated with an electron-rich, methoxy (-OMe) containing phenylenevinylene molecular wire, the resulting molecule, CRhOMe, is a voltage-sensitive fluorophore with red/far-red fluorescence. Using CRhOMe, changes in cellular membrane potential can be read out using fluorescence intensity or lifetime. In fluorescence intensity mode, CRhOMe tracks fast-spiking neuronal action potentials (APs) with greater signal-to-noise than state-of-the-art BeRST 1 (another voltage-sensitive fluorophore). CRhOMe can also measure values of membrane potential. The fluorescence lifetime of CRhOMe follows a single exponential decay, substantially improving the quantification of membrane potential values using fluorescence lifetime imaging microscopy (FLIM). The combination of red-shifted excitation and emission, mono-exponential decay, and high voltage sensitivity enable fast FLIM recording of APs in cardiomyocytes. The ability to both monitor and measure membrane potentials with red light using CRhOMe makes it an important approach for studying biological voltages.
生物膜电位或电压是细胞生命的一个核心方面。使用荧光指示剂对细胞膜电压进行光学可视化的方法是对传统基于电极的方法的一种有吸引力的补充,因为成像方法可以具有高通量、低侵入性并且比电极提供更高的空间分辨率。最近开发的用于电压的荧光指示剂在很大程度上通过监测荧光强度与电压相关的波动来报告膜电压的变化。然而,不仅能够监测变化,而且能够测量膜电位的值将是有用的。本研究揭示了一种能够同时解决这两个问题的荧光指示剂。我们描述了磺化四甲基碳菁荧光团的合成。当将这种碳菁与富含电子的甲氧(-OMe)苯基乙烯基分子线缀合时,得到的分子 CRhOMe 是一种具有红色/远红色荧光的电压敏感荧光团。使用 CRhOMe,可以使用荧光强度或寿命读出细胞细胞膜电位的变化。在荧光强度模式下,CRhOMe 以比最新的 BeRST 1(另一种电压敏感荧光团)更高的信噪比跟踪快速尖峰神经元动作电位(AP)。CRhOMe 还可以测量膜电位的值。CRhOMe 的荧光寿命遵循单指数衰减,这大大提高了使用荧光寿命成像显微镜(FLIM)对膜电位值的定量。红移激发和发射、单指数衰减和高电压灵敏度的组合使在心肌细胞中快速记录 AP 的 FLIM 成为可能。使用 CRhOMe 用红光进行膜电位的监测和测量的能力使其成为研究生物电压的重要方法。