Zhao Zirui, Li Hai-Feng
Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China.
ACS Appl Mater Interfaces. 2024 Oct 2;16(39):53153-53162. doi: 10.1021/acsami.4c10240. Epub 2024 Sep 18.
Understanding and predicting interface diffusion phenomena in materials is crucial for various industrial applications, including semiconductor manufacturing, battery technology, and catalysis. In this study, we propose a novel approach utilizing Graph Neural Networks (GNNs) to investigate and model material interface diffusion. We begin by collecting experimental and simulated data on diffusion coefficients, concentration gradients, and other relevant parameters from diverse material systems. The data are preprocessed, and key features influencing interface diffusion are extracted. Subsequently, we construct a GNN model tailored to the diffusion problem, with a graph representation capturing the atomic structure of materials. The model architecture includes multiple graph convolutional layers for feature aggregation and update, as well as optional graph attention layers to capture complex relationships between atoms. We train and validate the GNN model using the preprocessed data, achieving accurate predictions of diffusion coefficients, diffusion rates, concentration profiles, and potential diffusion pathways. Our approach offers insights into the underlying mechanisms of interface diffusion and provides a valuable tool for optimizing material design and engineering. Additionally, our method offers possible strategies to solve the longstanding problems related to materials interface diffusion.
理解和预测材料中的界面扩散现象对于各种工业应用至关重要,包括半导体制造、电池技术和催化。在本研究中,我们提出了一种利用图神经网络(GNN)的新方法来研究和模拟材料界面扩散。我们首先从不同的材料系统中收集关于扩散系数、浓度梯度和其他相关参数的实验和模拟数据。对数据进行预处理,并提取影响界面扩散的关键特征。随后,我们构建了一个针对扩散问题定制的GNN模型,其图表示捕获了材料的原子结构。模型架构包括多个用于特征聚合和更新的图卷积层,以及用于捕获原子之间复杂关系的可选图注意力层。我们使用预处理后的数据对GNN模型进行训练和验证,实现了对扩散系数、扩散速率、浓度分布和潜在扩散途径的准确预测。我们的方法深入了解了界面扩散的潜在机制,并为优化材料设计和工程提供了一个有价值的工具。此外,我们的方法提供了解决与材料界面扩散相关的长期问题的可能策略。