Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China.
School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China.
Adv Mater. 2024 Nov;36(47):e2412730. doi: 10.1002/adma.202412730. Epub 2024 Oct 2.
Nanotechnology has proven its enormous application value in clinical practice. However, current research on nanomedicines mainly focuses on developing nanoparticles as delivery carriers to maximize the bioavailability of therapeutic agents, with little attention on exploring their potential to directly regulate physiological processes. In this study, inspired by the lysosomal swelling caused by excessive accumulation of undegraded substances, this work presents a lysosomal-targeting aggregated nanoparticle (LTANP) for cancer treatment. By rationally engineering surface composition, properties, and interparticle interactions, LTANP achieves efficient tumor accumulation and selective targeted aggregation in lysosomes of cancer cells, leading to unrelievable lysosomal swelling, and ultimately inducing lysosomal membrane permeabilization (LMP) of cancer cells. Further analysis shows that nanoparticle aggregation-mediated LMP can effectively trigger immunogenic cell death (ICD) by impairing autophagy-lysosome pathway, evoking robust antitumor immune responses and reversing tumor immunogenicity from "cold" to "hot" in a melanoma model. Additionally, LTANP can combine with clinically approved programmed death ligand-1 (PD-L1) antibodies to further unleash T cell-mediated antitumor immunity, significantly enhancing antitumor performance, inhibiting tumor recurrence and metastasis. This work demonstrates the potential of rationally engineered nanostructures in directly combating cancer and provides novel insights for the development of advanced nanoparticle-based cancer treatment.
纳米技术在临床实践中已经证明了其巨大的应用价值。然而,目前对纳米药物的研究主要集中在开发纳米颗粒作为递送载体,以最大限度地提高治疗剂的生物利用度,而很少关注探索它们直接调节生理过程的潜力。在这项研究中,受过多未降解物质积累引起的溶酶体肿胀的启发,本工作提出了一种用于癌症治疗的溶酶体靶向聚集纳米颗粒(LTANP)。通过合理设计表面组成、性质和颗粒间相互作用,LTANP 能够在癌细胞的溶酶体中实现高效的肿瘤积累和选择性靶向聚集,导致不可缓解的溶酶体肿胀,最终诱导癌细胞的溶酶体膜通透性(LMP)。进一步的分析表明,纳米颗粒聚集介导的 LMP 可以通过破坏自噬-溶酶体途径有效地触发免疫原性细胞死亡(ICD),引发强烈的抗肿瘤免疫反应,并在黑色素瘤模型中使肿瘤免疫原性从“冷”转变为“热”。此外,LTANP 可以与临床批准的程序性死亡配体-1(PD-L1)抗体结合,进一步释放 T 细胞介导的抗肿瘤免疫,显著增强抗肿瘤性能,抑制肿瘤复发和转移。这项工作证明了合理设计的纳米结构在直接对抗癌症方面的潜力,并为开发先进的基于纳米颗粒的癌症治疗方法提供了新的思路。