Reza-Soltani Setareh, Fakhare Alam Laraib, Debellotte Omofolarin, Monga Tejbir S, Coyalkar Vaishali Raj, Tarnate Victoria Clarice A, Ozoalor Chioma Ugochinyere, Allam Sanjana Reddy, Afzal Maham, Shah Gunjan Kumari, Rai Manju
Advanced Diagnostic & Interventional Radiology Center (ADIR), Tehran University of Medical Sciences, Tehran, IRN.
Internal Medicine, Ministry of Health, Kuwait City, KWT.
Cureus. 2024 Sep 2;16(9):e68472. doi: 10.7759/cureus.68472. eCollection 2024 Sep.
Cardiovascular diseases remain the leading cause of global mortality, underscoring the critical need for accurate and timely diagnosis. This narrative review examines the current applications and future potential of artificial intelligence (AI) and machine learning (ML) in cardiovascular imaging. We discuss the integration of these technologies across various imaging modalities, including echocardiography, computed tomography, magnetic resonance imaging, and nuclear imaging techniques. The review explores AI-assisted diagnosis in key areas such as coronary artery disease detection, valve disorders assessment, cardiomyopathy classification, arrhythmia detection, and prediction of cardiovascular events. AI demonstrates promise in improving diagnostic accuracy, efficiency, and personalized care. However, significant challenges persist, including data quality standardization, model interpretability, regulatory considerations, and clinical workflow integration. We also address the limitations of current AI applications and the ethical implications of their implementation in clinical practice. Future directions point towards advanced AI architectures, multimodal imaging integration, and applications in precision medicine and population health management. The review emphasizes the need for ongoing collaboration between clinicians, data scientists, and policymakers to realize the full potential of AI in cardiovascular imaging while ensuring ethical and equitable implementation. As the field continues to evolve, addressing these challenges will be crucial for the successful integration of AI technologies into cardiovascular care, potentially revolutionizing diagnostic capabilities and improving patient outcomes.
心血管疾病仍然是全球死亡的主要原因,这凸显了对准确及时诊断的迫切需求。本叙述性综述探讨了人工智能(AI)和机器学习(ML)在心血管成像中的当前应用及未来潜力。我们讨论了这些技术在各种成像模式中的整合,包括超声心动图、计算机断层扫描、磁共振成像和核成像技术。该综述探讨了AI辅助诊断在冠状动脉疾病检测、瓣膜疾病评估、心肌病分类、心律失常检测以及心血管事件预测等关键领域的应用。AI在提高诊断准确性、效率和个性化医疗方面显示出前景。然而,重大挑战依然存在,包括数据质量标准化、模型可解释性、监管考量以及临床工作流程整合。我们还讨论了当前AI应用的局限性及其在临床实践中实施的伦理意义。未来的方向指向先进的AI架构、多模态成像整合以及在精准医学和人群健康管理中的应用。该综述强调临床医生、数据科学家和政策制定者之间持续合作的必要性,以充分发挥AI在心血管成像中的潜力,同时确保其符合伦理且公平地实施。随着该领域不断发展,应对这些挑战对于将AI技术成功整合到心血管护理中至关重要,这有可能彻底改变诊断能力并改善患者预后。