文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于超声心动图的机器学习算法鉴别缺血性心肌病与扩张型心肌病。

Echocardiography-based machine learning algorithm for distinguishing ischemic cardiomyopathy from dilated cardiomyopathy.

机构信息

Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.

Department of Cardiology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.

出版信息

BMC Cardiovasc Disord. 2023 Sep 26;23(1):476. doi: 10.1186/s12872-023-03520-4.


DOI:10.1186/s12872-023-03520-4
PMID:37752424
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10521456/
Abstract

BACKGROUND: Machine learning (ML) can identify and integrate connections among data and has the potential to predict events. Heart failure is primarily caused by cardiomyopathy, and different etiologies require different treatments. The present study examined the diagnostic value of a ML algorithm that combines echocardiographic data to automatically differentiate ischemic cardiomyopathy (ICM) from dilated cardiomyopathy (DCM). METHODS: We retrospectively collected the echocardiographic data of 200 DCM patients and 199 ICM patients treated in the First Affiliated Hospital of Guangxi Medical University between July 2016 and March 2022. All patients underwent invasive coronary angiography for diagnosis of ICM or DCM. The data were randomly divided into a training set and a test set via 10-fold cross-validation. Four ML algorithms (random forest, logistic regression, neural network, and XGBoost [ML algorithm under gradient boosting framework]) were used to generate a training model for the optimal subset, and the parameters were optimized. Finally, model performance was independently evaluated on the test set, and external validation was performed on 79 patients from another center. RESULTS: Compared with the logistic regression model (area under the curve [AUC] = 0.925), neural network model (AUC = 0.893), and random forest model (AUC = 0.900), the XGBoost model had the best identification rate, with an average sensitivity of 72% and average specificity of 78%. The average accuracy was 75%, and the AUC of the optimal subset was 0.934. External validation produced an AUC of 0.804, accuracy of 78%, sensitivity of 64% and specificity of 93%. CONCLUSIONS: We demonstrate that utilizing advanced ML algorithms can help to differentiate ICM from DCM and provide appreciable precision for etiological diagnosis and individualized treatment of heart failure patients.

摘要

背景:机器学习(ML)可以识别和整合数据之间的联系,并且具有预测事件的潜力。心力衰竭主要由心肌病引起,不同的病因需要不同的治疗方法。本研究检查了一种 ML 算法的诊断价值,该算法结合了超声心动图数据,可自动区分缺血性心肌病(ICM)和扩张型心肌病(DCM)。

方法:我们回顾性收集了 200 例 DCM 患者和 199 例在广西医科大学第一附属医院治疗的 ICM 患者的超声心动图数据,这些患者均于 2016 年 7 月至 2022 年 3 月期间接受了经皮冠状动脉造影术以诊断 ICM 或 DCM。将所有患者的数据通过 10 折交叉验证随机分为训练集和测试集。使用 4 种 ML 算法(随机森林、逻辑回归、神经网络和 XGBoost[梯度提升框架下的 ML 算法])生成最优子集的训练模型,并优化参数。最后,在测试集上独立评估模型性能,并在另一个中心的 79 名患者上进行外部验证。

结果:与逻辑回归模型(AUC=0.925)、神经网络模型(AUC=0.893)和随机森林模型(AUC=0.900)相比,XGBoost 模型的识别率最高,平均灵敏度为 72%,平均特异性为 78%。平均准确率为 75%,最优子集的 AUC 为 0.934。外部验证产生的 AUC 为 0.804,准确率为 78%,灵敏度为 64%,特异性为 93%。

结论:我们证明,利用先进的 ML 算法可以帮助区分 ICM 和 DCM,并为心力衰竭患者的病因诊断和个体化治疗提供有价值的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/f6ca7e4266f4/12872_2023_3520_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/9d2618d3c300/12872_2023_3520_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/7bca39dc2d8d/12872_2023_3520_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/b07ca8270efe/12872_2023_3520_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/eae1a38e1ff7/12872_2023_3520_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/f6ca7e4266f4/12872_2023_3520_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/9d2618d3c300/12872_2023_3520_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/7bca39dc2d8d/12872_2023_3520_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/b07ca8270efe/12872_2023_3520_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/eae1a38e1ff7/12872_2023_3520_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ab/10521456/f6ca7e4266f4/12872_2023_3520_Fig5_HTML.jpg

相似文献

[1]
Echocardiography-based machine learning algorithm for distinguishing ischemic cardiomyopathy from dilated cardiomyopathy.

BMC Cardiovasc Disord. 2023-9-26

[2]
Myocardial segmental thickness variability on echocardiography is a highly sensitive and specific marker to distinguish ischemic and non-ischemic dilated cardiomyopathy in new onset heart failure.

Int J Cardiovasc Imaging. 2019-5

[3]
Integration of Cine-cardiac Magnetic Resonance Radiomics and Machine Learning for Differentiating Ischemic and Dilated Cardiomyopathy.

Acad Radiol. 2024-7

[4]
Myocardial Deformation Pattern Differs between Ischemic and Non-ischemic Dilated Cardiomyopathy: The Diagnostic Value of Longitudinal Strains.

Ultrasound Med Biol. 2020-2

[5]
Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation.

PLoS Med. 2018-11-13

[6]
Machine learning-based classification and diagnosis of clinical cardiomyopathies.

Physiol Genomics. 2020-9-1

[7]
Machine learning algorithms to automate differentiating cardiac amyloidosis from hypertrophic cardiomyopathy.

Int J Cardiovasc Imaging. 2023-2

[8]
Cine-cardiac magnetic resonance to distinguish between ischemic and non-ischemic cardiomyopathies: a machine learning approach.

Eur Radiol. 2024-9

[9]
Mitral annuloplasty in patients with ischemic versus dilated cardiomyopathy.

Eur J Cardiothorac Surg. 2003-4

[10]
Integrative Proteomic Analysis Reveals the Cytoskeleton Regulation and Mitophagy Difference Between Ischemic Cardiomyopathy and Dilated Cardiomyopathy.

Mol Cell Proteomics. 2023-12

引用本文的文献

[1]
Interpretable machine learning for predicting isolated basal septal hypertrophy.

PLoS One. 2025-6-30

[2]
The Impact of Artificial Intelligence on Women's Cardiovascular Disease Care.

Curr Cardiol Rep. 2025-6-20

[3]
Hearts, Data, and Artificial Intelligence Wizardry: From Imitation to Innovation in Cardiovascular Care.

Biomedicines. 2025-4-23

[4]
Identifying Hypertrophic or Dilated Cardiomyopathy: Development and Validation of a Fine-Tuned ResNet50 Model Based on Electrocardiogram Image.

Bioengineering (Basel). 2025-2-28

[5]
Technological Advancements in Augmented, Mixed, and Virtual Reality Technologies for Surgery: A Systematic Review.

Cureus. 2024-12-26

[6]
Revolutionizing Cardiology: The Role of Artificial Intelligence in Echocardiography.

J Clin Med. 2025-1-19

[7]
Artificial Intelligence Advancements in Cardiomyopathies: Implications for Diagnosis and Management of Arrhythmogenic Cardiomyopathy.

Curr Heart Fail Rep. 2024-12-11

[8]
The Role of Artificial Intelligence and Machine Learning in Cardiovascular Imaging and Diagnosis.

Cureus. 2024-9-2

[9]
Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years.

Diagnostics (Basel). 2024-5-26

[10]
Artificial Intelligence in the Differential Diagnosis of Cardiomyopathy Phenotypes.

Diagnostics (Basel). 2024-1-10

本文引用的文献

[1]
Plasma Metabolomic Profiles Differentiate Patients With Dilated Cardiomyopathy and Ischemic Cardiomyopathy.

Front Cardiovasc Med. 2020-11-10

[2]
2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.

Circulation. 2020-12-22

[3]
Machine learning-based classification and diagnosis of clinical cardiomyopathies.

Physiol Genomics. 2020-9-1

[4]
How Machine Learning Will Transform Biomedicine.

Cell. 2020-4-2

[5]
Cardiovascular Coupling-Based Classification of Ischemic and Dilated Cardiomyopathy Patients.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[6]
Improving risk prediction in heart failure using machine learning.

Eur J Heart Fail. 2020-1

[7]
A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.

BMC Med Inform Decis Mak. 2019-11-6

[8]
A speckle-tracking strain-based artificial neural network model to differentiate cardiomyopathy type.

Scand Cardiovasc J. 2019-10-18

[9]
Development and Validation of Deep-Learning Algorithm for Electrocardiography-Based Heart Failure Identification.

Korean Circ J. 2019-7

[10]
Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics.

ESC Heart Fail. 2019-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索