Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
Department of Cardiology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
BMC Cardiovasc Disord. 2023 Sep 26;23(1):476. doi: 10.1186/s12872-023-03520-4.
BACKGROUND: Machine learning (ML) can identify and integrate connections among data and has the potential to predict events. Heart failure is primarily caused by cardiomyopathy, and different etiologies require different treatments. The present study examined the diagnostic value of a ML algorithm that combines echocardiographic data to automatically differentiate ischemic cardiomyopathy (ICM) from dilated cardiomyopathy (DCM). METHODS: We retrospectively collected the echocardiographic data of 200 DCM patients and 199 ICM patients treated in the First Affiliated Hospital of Guangxi Medical University between July 2016 and March 2022. All patients underwent invasive coronary angiography for diagnosis of ICM or DCM. The data were randomly divided into a training set and a test set via 10-fold cross-validation. Four ML algorithms (random forest, logistic regression, neural network, and XGBoost [ML algorithm under gradient boosting framework]) were used to generate a training model for the optimal subset, and the parameters were optimized. Finally, model performance was independently evaluated on the test set, and external validation was performed on 79 patients from another center. RESULTS: Compared with the logistic regression model (area under the curve [AUC] = 0.925), neural network model (AUC = 0.893), and random forest model (AUC = 0.900), the XGBoost model had the best identification rate, with an average sensitivity of 72% and average specificity of 78%. The average accuracy was 75%, and the AUC of the optimal subset was 0.934. External validation produced an AUC of 0.804, accuracy of 78%, sensitivity of 64% and specificity of 93%. CONCLUSIONS: We demonstrate that utilizing advanced ML algorithms can help to differentiate ICM from DCM and provide appreciable precision for etiological diagnosis and individualized treatment of heart failure patients.
背景:机器学习(ML)可以识别和整合数据之间的联系,并且具有预测事件的潜力。心力衰竭主要由心肌病引起,不同的病因需要不同的治疗方法。本研究检查了一种 ML 算法的诊断价值,该算法结合了超声心动图数据,可自动区分缺血性心肌病(ICM)和扩张型心肌病(DCM)。
方法:我们回顾性收集了 200 例 DCM 患者和 199 例在广西医科大学第一附属医院治疗的 ICM 患者的超声心动图数据,这些患者均于 2016 年 7 月至 2022 年 3 月期间接受了经皮冠状动脉造影术以诊断 ICM 或 DCM。将所有患者的数据通过 10 折交叉验证随机分为训练集和测试集。使用 4 种 ML 算法(随机森林、逻辑回归、神经网络和 XGBoost[梯度提升框架下的 ML 算法])生成最优子集的训练模型,并优化参数。最后,在测试集上独立评估模型性能,并在另一个中心的 79 名患者上进行外部验证。
结果:与逻辑回归模型(AUC=0.925)、神经网络模型(AUC=0.893)和随机森林模型(AUC=0.900)相比,XGBoost 模型的识别率最高,平均灵敏度为 72%,平均特异性为 78%。平均准确率为 75%,最优子集的 AUC 为 0.934。外部验证产生的 AUC 为 0.804,准确率为 78%,灵敏度为 64%,特异性为 93%。
结论:我们证明,利用先进的 ML 算法可以帮助区分 ICM 和 DCM,并为心力衰竭患者的病因诊断和个体化治疗提供有价值的精度。
BMC Cardiovasc Disord. 2023-9-26
Physiol Genomics. 2020-9-1
Int J Cardiovasc Imaging. 2023-2
Eur J Cardiothorac Surg. 2003-4
Curr Cardiol Rep. 2025-6-20
J Clin Med. 2025-1-19
Diagnostics (Basel). 2024-1-10
Front Cardiovasc Med. 2020-11-10
Physiol Genomics. 2020-9-1
Cell. 2020-4-2
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Eur J Heart Fail. 2020-1
BMC Med Inform Decis Mak. 2019-11-6
Scand Cardiovasc J. 2019-10-18