Suppr超能文献

机器学习增强超声心动图用于筛查冠状动脉疾病。

Machine learning-enhanced echocardiography for screening coronary artery disease.

机构信息

Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.

Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.

出版信息

Biomed Eng Online. 2023 May 11;22(1):44. doi: 10.1186/s12938-023-01106-x.

Abstract

BACKGROUND

Since myocardial work (MW) and left atrial strain are valuable for screening coronary artery disease (CAD), this study aimed to develop a novel CAD screening approach based on machine learning-enhanced echocardiography.

METHODS

This prospective study used data from patients undergoing coronary angiography, in which the novel echocardiography features were extracted by a machine learning algorithm. A total of 818 patients were enrolled and randomly divided into training (80%) and testing (20%) groups. An additional 115 patients were also enrolled in the validation group.

RESULTS

The superior diagnosis model of CAD was optimized using 59 echocardiographic features in a gradient-boosting classifier. This model showed that the value of the receiver operating characteristic area under the curve (AUC) was 0.852 in the test group and 0.834 in the validation group, with high sensitivity (0.952) and low specificity (0.691), suggesting that this model is very sensitive for detecting CAD, but its low specificity may increase the high false-positive rate. We also determined that the false-positive cases were more susceptible to suffering cardiac events than the true-negative cases.

CONCLUSIONS

Machine learning-enhanced echocardiography can improve CAD detection based on the MW and left atrial strain features. Our developed model is valuable for estimating the pre-test probability of CAD and screening CAD patients in clinical practice.

TRIAL REGISTRATION

Registered as NCT03905200 at ClinicalTrials.gov. Registered on 5 April 2019.

摘要

背景

由于心肌做功(MW)和左心房应变可用于筛查冠状动脉疾病(CAD),因此本研究旨在开发一种基于机器学习增强超声心动图的新型 CAD 筛查方法。

方法

本前瞻性研究使用了接受冠状动脉造影的患者的数据,其中通过机器学习算法提取了新的超声心动图特征。共纳入 818 例患者,并随机分为训练(80%)和测试(20%)组。另外还纳入了 115 例患者作为验证组。

结果

使用梯度提升分类器中的 59 个超声心动图特征对 CAD 的最优诊断模型进行了优化。该模型在测试组中的曲线下面积(AUC)的接受者操作特征值为 0.852,在验证组中的 AUC 值为 0.834,具有较高的敏感性(0.952)和较低的特异性(0.691),这表明该模型非常敏感,可用于检测 CAD,但特异性低可能会导致假阳性率升高。我们还发现,假阳性病例比真阴性病例更容易发生心脏事件。

结论

机器学习增强超声心动图可以提高基于 MW 和左心房应变特征的 CAD 检测。我们开发的模型对于估计 CAD 的术前概率和在临床实践中筛查 CAD 患者具有重要价值。

试验注册

在 ClinicalTrials.gov 上注册为 NCT03905200。注册于 2019 年 4 月 5 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3228/10176743/6c9793d6ee44/12938_2023_1106_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验