Iles-Smith Jake, Diba Owen, Nazir Ahsan
Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
School of Mathematical and Physical Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom.
J Chem Phys. 2024 Oct 7;161(13). doi: 10.1063/5.0228779.
Understanding the dynamics of open quantum systems in strong coupling and non-Markovian regimes remains a formidable theoretical challenge. One popular and well-established method of approximation in these circumstances is provided by the polaron master equation (PME). In this work, we re-evaluate and extend the validity of the PME to capture the impact of non-Markovian polaron dressing, induced by non-equilibrium open system dynamics. By comparing with numerically exact techniques, we confirm that while the standard PME successfully predicts the dynamics of system observables that commute with the polaron transformation (e.g., populations in the Pauli z-basis), it can struggle to fully capture those that do not (e.g., coherences). This limitation stems from the mixing of system and environment degrees of freedom inherent to the polaron transformation, which affects the accuracy of calculated expectation values within the polaron frame. Employing the Nakajima-Zwanzig projection operator formalism, we introduce correction terms that provide an accurate description of observables that do not commute with the transformation. We demonstrate the significance of the correction terms in two cases, the canonical spin-boson model and a dissipative time-dependent Landau-Zener protocol, where they are shown to impact the system dynamics on both short and long timescales.
理解强耦合和非马尔可夫区域中开放量子系统的动力学仍然是一个巨大的理论挑战。在这些情况下,一种流行且成熟的近似方法是极化子主方程(PME)。在这项工作中,我们重新评估并扩展了PME的有效性,以捕捉由非平衡开放系统动力学引起的非马尔可夫极化子修饰的影响。通过与数值精确技术进行比较,我们证实,虽然标准PME成功地预测了与极化子变换对易的系统可观测量的动力学(例如,泡利z基下的布居数),但它可能难以完全捕捉那些不对易的可观测量(例如,相干性)。这种限制源于极化子变换固有的系统和环境自由度的混合,这会影响极化子框架内计算期望值的准确性。利用中岛 - 兹万齐格投影算符形式,我们引入了修正项,这些修正项提供了对与变换不对易的可观测量的准确描述。我们在两种情况下展示了修正项的重要性,即正则自旋 - 玻色子模型和一个含时耗散的朗道 - 齐纳协议,在这两种情况下,它们被证明在短时间和长时间尺度上都会影响系统动力学。