MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.
Elife. 2024 Oct 3;13:RP96848. doi: 10.7554/eLife.96848.
γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons . Nevertheless, how γ-secretase activity is regulated remains unclear. Here, we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential 'cell non-autonomous' regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.
γ-分泌酶在中枢神经系统中起着关键作用。我们最近开发的基于遗传编码的Förster 共振能量转移(FRET)的生物传感器,使我们能够在活神经元上逐个细胞地记录 γ-分泌酶活性的时空变化。然而,γ-分泌酶的活性如何调节仍然不清楚。在这里,我们使用近红外(NIR)C99 720-670 生物传感器和 NIR 共聚焦显微镜,在活体小鼠大脑的单个神经元中定量记录 γ-分泌酶的活性。有趣的是,我们发现 γ-分泌酶的活性可能会影响邻近神经元中 γ-分泌酶的活性,这表明在小鼠大脑中,γ-分泌酶可能存在潜在的“非细胞自主”调节。鉴于 γ-分泌酶在重要的生物事件和各种疾病中起着关键作用,我们的新检测方法将成为一个新的平台,使我们能够剖析 γ-分泌酶在正常健康和疾病中的重要作用。