Ming Hongwei, Luo Zhong-Zhen, Chen Zixuan, Cui Hong-Hua, Zheng Wenwen, Zou Zhigang, Kanatzidis Mercouri G
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
J Am Chem Soc. 2024 Oct 3. doi: 10.1021/jacs.4c10286.
SnTe is an intriguing alternative to PbTe for midtemperature thermoelectric applications. Despite steady progress, its performance is lagging, in part because of the large energy difference(Δ) between the light (L-band) and heavy (Σ-band) valence bands and higher lattice thermal conductivity (κ). Previous studies have shown that applying pressure can enhance the Seebeck coefficient () and power factor () of SnTe. Inspired by this study, we showcase how the high-pressure effect can be emulated under ambient pressure by substituting Sn with atoms possessing smaller atomic radii. Specifically, Sb- and Ge-doping combined with CdTe- or CdS-alloying induce lattice shrinkage, also referred to as "chemical pressure", raising the energy of the Σ-band. Additionally, these substituted atoms lower the contribution of Sn 5s-Te 5p antibonding states to the L-band, thereby reducing its energy and dispersion. These combined effects decrease Δ from 0.36 to 0.09 eV, leading to the enhanced and average . Notably, the , ranging from 323 to 873 K, increases from 8.1 μW cm K for pristine SnTe to 21.6 μW cm K for SnGeSbTe-5% CdTe. Furthermore, the intensified phonon scattering resulting from discordant nature of Ge and Cd atoms, creating point defects soften phonon modes, and the presence of Ge-rich nanoprecipitates lead to a substantial 62% reduction in κ at 873 K. This strong valence band convergence and enhanced phonon scattering collectively contribute to a high peak of 1.5 (873 K) and high average = 0.81 over the temperature range of 323-873 K.
对于中温热电应用而言,碲化锡(SnTe)是一种引人关注的碲化铅(PbTe)替代材料。尽管取得了稳步进展,但其性能仍较为滞后,部分原因在于轻(L 带)重(Σ 带)价带之间存在较大的能量差(Δ)以及较高的晶格热导率(κ)。先前的研究表明,施加压力可提高 SnTe 的塞贝克系数()和功率因数()。受此研究启发,我们展示了如何在常压下通过用原子半径较小的原子替代 Sn 来模拟高压效应。具体而言,锑(Sb)和锗(Ge)掺杂与碲化镉(CdTe)或硫化镉(CdS)合金化会引起晶格收缩,也称为“化学压力”,从而提高 Σ 带的能量。此外,这些替代原子降低了 Sn 5s-Te 5p 反键态对 L 带的贡献,进而降低其能量和色散。这些综合效应使 Δ 从 0.36 电子伏特降至 0.09 电子伏特,导致 和平均值 增强。值得注意的是,在 323 至 873 K 的温度范围内, 从原始 SnTe 的 8.1 μW cm K 增加到 SnGeSbTe-5% CdTe 的 21.6 μW cm K。此外,锗和镉原子性质不一致导致的声子散射增强、产生点缺陷使声子模式软化以及富锗纳米沉淀物的存在,使得在 873 K 时 κ 大幅降低 62%。这种强价带收敛和增强的声子散射共同促成了在 873 K 时高达 1.5 的高峰值 和在 323 - 873 K 温度范围内高达 0.81 的高平均 。