Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae587.
Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators.
Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis.
Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.
由于平台、RNA 质量、样本处理和其他未知技术效果的差异,对异质表达数据进行综合分析仍然具有挑战性。选择去除不需要的批次效应的方法可能是一个耗时且乏味的过程,特别是对于更注重生物学的研究人员。
在这里,我们展示了 BatchFLEX,这是一个 Shiny 应用程序,它可以使用几种已建立的方法来促进批次效应的可视化和校正。BatchFLEX 可以在校正前后可视化因素的方差贡献。例如,我们已经分析了 ImmGen 微阵列数据,并增强了其可以区分每种免疫细胞类型的表达信号。此外,我们的分析还揭示了批次校正对改变免疫细胞类型中基因表达等级和单个样本 GSEA 途径评分的影响,突出了实时评估批次校正对于最佳下游分析的重要性。
我们的工具可通过 Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp 获取,并可在 Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/ 上查看在线示例。