Suppr超能文献

基于潜在流形分析的运动完全性脊髓损伤患者手部运动维度的可保留和可代偿性识别。

Identification of Spared and Proportionally Controllable Hand Motor Dimensions in Motor Complete Spinal Cord Injuries Using Latent Manifold Analysis.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3741-3750. doi: 10.1109/TNSRE.2024.3472063. Epub 2024 Oct 9.

Abstract

The loss of bilateral hand function is a debilitating challenge for millions of individuals that suffered a motor-complete spinal cord injury (SCI). We have recently demonstrated in eight tetraplegic individuals the presence of highly functional spared spinal motor neurons in the extrinsic muscles of the hand that are still capable of generating proportional flexion and extension signals. In this work, we hypothesized that an artificial intelligence (AI) system could automatically learn the spared electromyographic (EMG) patterns that encode the attempted movements of the paralyzed digits. We constrained the AI to continuously output the attempted movements in the form of a digital hand so that this signal could be used to control any assistive system (e.g. exoskeletons, electrical stimulation). We trained a convolutional neural network using data from 13 uninjured (control) participants and 8 tetraplegic participants (7 motor-complete, 1 incomplete) to study the latent space learned by the AI. Our model can automatically differentiate between eight different hand movements, including individual finger flexions, grasps, and pinches, achieving a mean accuracy of 98.3% within the SCI group. Analysis of the latent space of the model revealed that proportionally controllable movements exhibited an elliptical path, while movements lacking proportional control followed a chaotic trajectory. We found that proportional control of a movement can only be correctly estimated if the latent space embedding of the movement follows an elliptical path (correlation =0.73; p <0.001). These findings emphasize the reliability of the proposed system for closed-loop applications that require an accurate estimate of spinal cord motor output.

摘要

丧失双手功能对数百万名患有完全性脊髓损伤(SCI)的患者来说是一个严重的挑战。我们最近在 8 名四肢瘫痪患者中发现,手部外在肌肉中存在功能高度健全的、未受损的脊髓运动神经元,这些神经元仍然能够产生比例性的屈伸信号。在这项工作中,我们假设人工智能(AI)系统可以自动学习编码瘫痪手指运动意图的、有剩余的肌电图(EMG)模式。我们限制 AI 持续以数字手的形式输出尝试的运动,以便该信号可用于控制任何辅助系统(例如外骨骼、电刺激)。我们使用来自 13 名未受伤(对照)参与者和 8 名四肢瘫痪参与者(7 名完全性损伤,1 名不完全性损伤)的数据来训练卷积神经网络,以研究 AI 学习的潜在空间。我们的模型可以自动区分 8 种不同的手部运动,包括单个手指的弯曲、抓握和捏合,在 SCI 组中的平均准确率为 98.3%。对模型潜在空间的分析表明,可按比例控制的运动表现出椭圆形轨迹,而缺乏比例控制的运动则遵循混沌轨迹。我们发现,如果运动的潜在空间嵌入遵循椭圆形路径(相关性=0.73;p<0.001),则可以正确估计运动的比例控制。这些发现强调了所提出的系统对于需要准确估计脊髓运动输出的闭环应用的可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验