Suppr超能文献

区域内不放!赢得高级俄罗斯方块的关键。

Zone In Not Out! The Key to Winning High-Level Tetris.

机构信息

Department of Psychology, The American University in Cairo, New Cairo, Egypt.

出版信息

Percept Mot Skills. 2024 Dec;131(6):2304-2323. doi: 10.1177/00315125241289687. Epub 2024 Oct 3.

Abstract

Automating a perceptual-motor task will not win you a perceptual-motor contest. Despite claims that mindless automaticity is the essence of expertise, the view espoused here is that automaticity is worthwhile only because it enables the expert to plan and strategize. Indeed, the purpose of learning to manually shift gears is to eventually ignore that function to focus instead on actual driving. To perform well, the expert must transition their attention from a task's low-level components to its high-level nuances. This is best understood in real-world scenarios (e.g. driving, in which performance is dynamic and sometimes competitive). This argument is based on a years-long, longitudinal case study of learning to play the puzzle game, Tetris. Tetris is intensively perceptual-motor with complicated manual routines needed to manage expert game speeds. For this case study, the player began as an advanced novice but successfully transitioned to championship level in the 2020 Classic Tetris World Championship. Initially, the challenge was gaining enough skill to make and execute perceptual-motor decisions in a fraction of a second. However, once that process became automatic, the player could spend those freed mental resources elsewhere. Performance was better for all games when the player was mentally engaged and used their focused attention to plan ahead rather than just automatically respond to the game pieces. We argue that the end goal for automating perceptual-motor skills in competitive, dynamic environments is to free cognitive space in the brain for the user to excel strategically.

摘要

自动化感知运动任务并不能让你在感知运动竞赛中获胜。尽管有人声称无意识的自动性是专长的本质,但这里所拥护的观点是,只有当自动性能够使专家进行计划和策略制定时,它才是有价值的。实际上,学习手动换挡的目的是最终忽略该功能,而专注于实际驾驶。为了表现出色,专家必须将注意力从任务的低水平组件转移到高水平的细微差别。在现实场景中(例如驾驶,其性能是动态的,有时是有竞争力的),这一点最容易理解。这个论点是基于对学习玩拼图游戏俄罗斯方块的多年纵向案例研究。俄罗斯方块是一种高度感知运动的游戏,需要复杂的手动操作来管理专家级别的游戏速度。在这个案例研究中,玩家最初是高级新手,但在 2020 年经典俄罗斯方块世界锦标赛中成功过渡到冠军级别。最初的挑战是获得足够的技能,以便在几分之一秒内做出感知运动决策并执行这些决策。然而,一旦这个过程变得自动化,玩家就可以将这些解放的心理资源用于其他地方。当玩家在心理上投入并利用他们的注意力来提前计划,而不仅仅是自动响应游戏块时,他们的表现会更好。我们认为,在竞争激烈、动态的环境中自动化感知运动技能的最终目标是为用户在策略上的卓越表现释放大脑中的认知空间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验