School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, Jilin, China.
School of Mathematics, Jilin University, Changchun, Jilin, China.
PLoS Genet. 2024 Oct 3;20(10):e1011423. doi: 10.1371/journal.pgen.1011423. eCollection 2024 Oct.
Replicable signals from different yet conceptually related studies provide stronger scientific evidence and more powerful inference. We introduce STAREG, a statistical method for replicability analysis of high throughput experiments, and apply it to analyze spatial transcriptomic studies. STAREG uses summary statistics from multiple studies of high throughput experiments and models the the joint distribution of p-values accounting for the heterogeneity of different studies. It effectively controls the false discovery rate (FDR) and has higher power by information borrowing. Moreover, it provides different rankings of important genes. With the EM algorithm in combination with pool-adjacent-violator-algorithm (PAVA), STAREG is scalable to datasets with millions of genes without any tuning parameters. Analyzing two pairs of spatially resolved transcriptomic datasets, we are able to make biological discoveries that otherwise cannot be obtained by using existing methods.
来自不同但概念上相关的研究的可复制信号提供了更强有力的科学证据和更强大的推论。我们引入了 STAREG,这是一种用于高通量实验可重复性分析的统计方法,并将其应用于分析空间转录组学研究。STAREG 使用来自多个高通量实验研究的汇总统计信息,并对 p 值的联合分布进行建模,考虑到不同研究的异质性。它有效地控制了错误发现率 (FDR),并通过信息借用获得了更高的功效。此外,它还提供了重要基因的不同排名。通过与 EM 算法结合使用,STAREG 可以扩展到具有数百万个基因的数据集,而无需任何调整参数。通过分析两对空间分辨转录组数据集,我们能够做出生物学发现,而这些发现是使用现有方法无法获得的。