Department of Public Health Sciences, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America.
Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America.
PLoS Genet. 2023 Oct 20;19(10):e1010983. doi: 10.1371/journal.pgen.1010983. eCollection 2023 Oct.
In high-throughput spatial transcriptomics (ST) studies, it is of great interest to identify the genes whose level of expression in a tissue covaries with the spatial location of cells/spots. Such genes, also known as spatially variable genes (SVGs), can be crucial to the biological understanding of both structural and functional characteristics of complex tissues. Existing methods for detecting SVGs either suffer from huge computational demand or significantly lack statistical power. We propose a non-parametric method termed SMASH that achieves a balance between the above two problems. We compare SMASH with other existing methods in varying simulation scenarios demonstrating its superior statistical power and robustness. We apply the method to four ST datasets from different platforms uncovering interesting biological insights.
在高通量空间转录组学(ST)研究中,鉴定那些在组织中表达水平与细胞/斑点的空间位置相关的基因是非常有意义的。这些基因也被称为空间变异基因(SVGs),对于理解复杂组织的结构和功能特征具有重要意义。现有的检测 SVGs 的方法要么存在巨大的计算需求,要么在统计能力上明显不足。我们提出了一种称为 SMASH 的非参数方法,在这两个问题之间取得了平衡。我们在不同的模拟场景下将 SMASH 与其他现有方法进行了比较,证明了它具有更高的统计能力和鲁棒性。我们将该方法应用于来自不同平台的四个 ST 数据集,揭示了有趣的生物学见解。