Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea.
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
Radiother Oncol. 2024 Dec;201:110566. doi: 10.1016/j.radonc.2024.110566. Epub 2024 Oct 1.
Radiotherapy (RT) in non-small cell lung cancer (NSCLC) can induce cardiac adverse events, including atrial fibrillation (AF), despite advanced RT. This study integrates patient-specific information to develop learning-based models to predict the incidence of AF following NSCLC chemoradiotherapy (CRT) and evaluates these models using institutional and external datasets.
Institutional and external patient cohorts consisted of 321 and 187 NSCLC datasets who received definitive CRT, including 17 and 6 AF incidences, respectively. The network input had 159 features with clinical, dosimetry, and diagnostic. The class imbalance was mitigated by synthetic minority oversampling technique. To handle various types of input features, machine learning-based model adopted an intervention technique that chose one feature with the largest weight at each dosimetry sub-group in feature selection process, while deep learning-based model employed a hybrid architecture assigning different types of networks to corresponding input paths. Performance was assessed by area under the curve (AUC). The key features were investigated for the machine and deep learning-based models.
The hybrid deep learning model outperformed the machine learning-based algorithm in internal validation (AUC: 0.817 vs. 0.801) and produced more consistent performance in external validation (AUC: 0.806 vs. 0.776). Importantly, maximum dose to heart and sinoatrial node (SAN) were found to be the key features for both learning-based models in external and internal validations.
The learning-based predictive models showed consistent prediction performance across internal and external cohorts, identifying maximum heart and SAN dose as key features for the incidence of AF.
尽管采用了先进的放射治疗(RT)技术,非小细胞肺癌(NSCLC)的放射治疗仍可导致心脏不良事件,包括心房颤动(AF)。本研究整合了患者特定信息,开发了基于学习的模型来预测 NSCLC 放化疗(CRT)后 AF 的发生率,并使用机构内和机构外数据集来评估这些模型。
机构内和机构外患者队列分别由 321 例和 187 例 NSCLC 数据集组成,这些患者分别接受了根治性 CRT,其中分别有 17 例和 6 例发生 AF。网络输入有 159 个具有临床、剂量学和诊断学特征的特征。采用合成少数过采样技术减轻了类别不平衡。为了处理各种类型的输入特征,基于机器学习的模型采用了干预技术,即在特征选择过程中,对于每个剂量分组,选择具有最大权重的一个特征;而基于深度学习的模型则采用了混合架构,为相应的输入路径分配了不同类型的网络。通过曲线下面积(AUC)来评估性能。研究了基于机器和深度学习的模型的关键特征。
混合深度学习模型在内部验证中的表现优于基于机器学习的算法(AUC:0.817 与 0.801),并且在外部验证中产生了更一致的性能(AUC:0.806 与 0.776)。重要的是,心脏和窦房结(SAN)的最大剂量被发现是这两种学习型模型在内部和外部验证中的关键特征。
基于学习的预测模型在内部和外部队列中表现出一致的预测性能,确定了心脏和 SAN 最大剂量是 AF 发生率的关键特征。