State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Ningbo Research Institute, International Research Center for Advanced Photonics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China.
Science. 2023 Jul 14;381(6654):221-226. doi: 10.1126/science.adg9210. Epub 2023 Jul 13.
Quantum networks provide the framework for quantum communication, clock synchronization, distributed quantum computing, and sensing. Implementing large-scale and practical quantum networks relies on the development of scalable architecture and integrated hardware that can coherently interconnect many remote quantum nodes by sharing multidimensional entanglement through complex-medium quantum channels. We demonstrate a multichip multidimensional quantum entanglement network based on mass-manufacturable integrated-nanophotonic quantum node chips fabricated on a silicon wafer by means of complementary metal-oxide-semiconductor processes. Using hybrid multiplexing, we show that multiple multidimensional entangled states can be distributed across multiple chips connected by few-mode fibers. We developed a technique that can efficiently retrieve multidimensional entanglement in complex-medium quantum channels, which is important for practical uses. Our work demonstrates the enabling capabilities of realizing large-scale practical chip-based quantum entanglement networks.
量子网络为量子通信、时钟同步、分布式量子计算和传感提供了框架。实现大规模和实用的量子网络依赖于可扩展架构和集成硬件的发展,这些硬件可以通过共享复杂介质量子通道中的多维纠缠,通过多模光纤将许多远程量子节点相干地互连起来。我们展示了一种基于多芯片多维量子纠缠网络,该网络基于在硅片上制造的可大规模生产的集成纳米光子量子节点芯片,采用互补金属氧化物半导体工艺。通过混合复用,我们表明可以在由少模光纤连接的多个芯片上分布多个多维纠缠态。我们开发了一种可以在复杂介质量子通道中高效地检索多维纠缠的技术,这对于实际应用非常重要。我们的工作证明了实现大规模实用的基于芯片的量子纠缠网络的使能能力。