Dong Jiaqi, Chen Lingjuan, Feng Qingliang, Yang Deng-Tao
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202417200. doi: 10.1002/anie.202417200. Epub 2024 Nov 6.
A novel design strategy to construct bright and narrow near-infrared (NIR) emission materials with suppressed shoulder peaks can significantly enhance their performance in various applications. Herein, we have successfully synthesized a series of helically twisted D-π-A conjugated systems bridged by boron atoms, achieving bright red to near-infrared (NIR) emissions with notably narrow full-width at half-maximum (FWHM) values of 35 nm (0.08 eV) and photoluminescence quantum yields (PLQY) up to 80 %. These compounds display red-shifted emissions up to 753 nm in higher concentrations. Cis/trans configurational isomers of multi-boron-bridged molecule BN3 exhibit similar photophysical properties. The unique combination of boron-induced coordination-enhanced charge transfer (CE-CT) and the helically twisted conjugated framework is pivotal in achieving the red-shifted, narrowband emission. X-ray crystallographic analysis of BN2 and BN3-a reveals that the extension of boron-bridged D-π-A skeletons significantly increases the distortion of the skeleton. Systematic theoretical calculations show how the boron CE-CT mechanism, in conjunction with the helical twist, leads to the narrowing of emission bands while simultaneously red-shifting them into the NIR region. This work could open new avenues for the development of advanced materials with tailored optical properties, particularly in the challenging and highly sought-after NIR spectrum.
一种构建具有抑制肩峰的明亮且窄的近红外(NIR)发射材料的新颖设计策略,可以显著提高其在各种应用中的性能。在此,我们成功合成了一系列由硼原子桥连的螺旋扭曲D-π-A共轭体系,实现了从亮红色到近红外(NIR)发射,半高宽(FWHM)值窄至35 nm(0.08 eV),光致发光量子产率(PLQY)高达80%。这些化合物在较高浓度下发射波长红移至753 nm。多硼桥连分子BN3的顺式/反式构型异构体表现出相似的光物理性质。硼诱导的配位增强电荷转移(CE-CT)与螺旋扭曲共轭骨架的独特结合对于实现红移、窄带发射至关重要。BN2和BN3-a的X射线晶体学分析表明,硼桥连D-π-A骨架的延伸显著增加了骨架的扭曲。系统的理论计算表明硼CE-CT机制与螺旋扭曲如何共同导致发射带变窄,同时将其红移至近红外区域。这项工作可为开发具有定制光学性质的先进材料开辟新途径,特别是在具有挑战性且备受追捧的近红外光谱领域。