Shang Zhuo, Arishi Amr A, Wu Changzheng, Lao Fangzheng, Gilchrist Cameron L M, Moggach Stephen A, Lacey Ernest, Piggott Andrew M, Chooi Yit-Heng
School of Molecular Sciences, The University of Western Australia, 6009, Perth, WA, Australia.
School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, China.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414941. doi: 10.1002/anie.202414941. Epub 2024 Nov 6.
Cerulenin (1) is the first reported natural fatty acid synthase inhibitor and has been intensively researched for its antifungal, anticancer and anti-obesity properties. However, the molecular basis for its biosynthesis has remained a mystery for six decades. Here, we have identified the polyketide biosynthetic gene cluster (cer) responsible for the biosynthesis of 1 from two Sarocladium species using a self-resistance gene mining approach, which we validated via heterologous reconstitution of cer cluster in an Aspergillus nidulans host. Expression of various combinations of cer genes uncovered key pathway intermediates, electrocyclisation products derived from PKS-encoded polyenoic acids, and a suite of 13 new analogues of 1. This enabled us to establish a biosynthetic pathway to 1 that starts with a C polyketide precursor containing both E and Z double bonds and involves a complex series of epoxidations, double bond shifts, E/Z isomerisation and epoxide reduction. Using in vitro assays, we further validated the roles of amidotransferase CerD in amidation, and oxidase CerF and reductase CerE in the final two-electron oxidation and enone reduction steps towards 1. These findings expand our understanding of complex tailoring modifications in highly reducing PKS pathways and pave the way for the engineered biosynthesis of cerulenin analogues.
浅蓝菌素(1)是首个被报道的天然脂肪酸合酶抑制剂,因其抗真菌、抗癌和抗肥胖特性而受到深入研究。然而,其生物合成的分子基础在六十年来一直是个谜。在此,我们使用自我抗性基因挖掘方法,从两种帚枝霉属物种中鉴定出了负责1生物合成的聚酮生物合成基因簇(cer),并通过在构巢曲霉宿主中对cer簇进行异源重组验证了这一结果。cer基因不同组合的表达揭示了关键途径中间体、由聚酮合酶编码的多烯酸衍生的电环化产物,以及1的一系列13种新类似物。这使我们能够建立一条通向1的生物合成途径,该途径始于含有E型和Z型双键的C聚酮前体,并涉及一系列复杂的环氧化、双键迁移、E/Z异构化和环氧化物还原反应。通过体外实验,我们进一步验证了酰胺转移酶CerD在酰胺化中的作用,以及氧化酶CerF和还原酶CerE在通向1的最后两步双电子氧化和烯酮还原反应中的作用。这些发现扩展了我们对高度还原型聚酮合酶途径中复杂修饰的理解,并为浅蓝菌素类似物的工程生物合成铺平了道路。