Suppr超能文献

癌症研究中的多组学数据整合方法。

Methods for multi-omic data integration in cancer research.

作者信息

Hernández-Lemus Enrique, Ochoa Soledad

机构信息

Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.

Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico.

出版信息

Front Genet. 2024 Sep 19;15:1425456. doi: 10.3389/fgene.2024.1425456. eCollection 2024.

Abstract

Multi-omics data integration is a term that refers to the process of combining and analyzing data from different omic experimental sources, such as genomics, transcriptomics, methylation assays, and microRNA sequencing, among others. Such data integration approaches have the potential to provide a more comprehensive functional understanding of biological systems and has numerous applications in areas such as disease diagnosis, prognosis and therapy. However, quantitative integration of multi-omic data is a complex task that requires the use of highly specialized methods and approaches. Here, we discuss a number of data integration methods that have been developed with multi-omics data in view, including statistical methods, machine learning approaches, and network-based approaches. We also discuss the challenges and limitations of such methods and provide examples of their applications in the literature. Overall, this review aims to provide an overview of the current state of the field and highlight potential directions for future research.

摘要

多组学数据整合是一个术语,指的是将来自不同组学实验来源的数据进行组合和分析的过程,这些来源包括基因组学、转录组学、甲基化检测以及微小RNA测序等。这种数据整合方法有潜力提供对生物系统更全面的功能理解,并且在疾病诊断、预后和治疗等领域有众多应用。然而,多组学数据的定量整合是一项复杂的任务,需要使用高度专业化的方法和途径。在此,我们讨论了一些针对多组学数据而开发的数据整合方法,包括统计方法、机器学习方法和基于网络的方法。我们还讨论了这些方法的挑战和局限性,并给出它们在文献中的应用实例。总体而言,本综述旨在概述该领域的当前状态,并突出未来研究的潜在方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f65/11446849/acfa32525fd2/fgene-15-1425456-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验