Suppr超能文献

基于SHapley值加法解释的可解释机器学习模型预测骨质疏松性椎体压缩骨折经皮椎体强化术中骨水泥渗漏情况

Interpretable Machine Learning Model to Predict Bone Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fracture Based on SHapley Additive exPlanations.

作者信息

Hu Yi-Li, Wang Pei-Yang, Xie Zhi-Yang, Ren Guan-Rui, Zhang Cong, Ji Hang-Yu, Xie Xin-Hui, Zhuang Su-Yang, Wu Xiao-Tao

机构信息

Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.

出版信息

Global Spine J. 2025 Mar;15(2):689-701. doi: 10.1177/21925682231204159. Epub 2023 Nov 3.

Abstract

STUDY DESIGN

Retrospective study.

OBJECTIVES

Our objective is to create comprehensible machine learning (ML) models that can forecast bone cement leakage in percutaneous vertebral augmentation (PVA) for individuals with osteoporotic vertebral compression fracture (OVCF) while also identifying the associated risk factors.

METHODS

We incorporated data from patients (n = 425) which underwent PVA. To predict cement leakage, we devised six models based on a variety of parameters. Evaluate and juxtapose the predictive performances relied on measures of discrimination, calibration, and clinical utility. SHapley Additive exPlanations (SHAP) methodology was used to interpret model and evaluate the risk factors associated with cement leakage.

RESULTS

The occurrence rate of cement leakage was established at 50.4%. A binary logistic regression analysis identified cortical disruption (OR 6.880, 95% CI 4.209-11.246), the basivertebral foramen sign (OR 2.142, 95% CI 1.303-3.521), the fracture type (OR 1.683, 95% CI 1.083-2.617), and the volume of bone cement (OR 1.198, 95% CI 1.070-1.341) as independent predictors of cement leakage. The XGBoost model outperformed all others in predicting cement leakage in the testing set, with AUC of .8819, accuracy of .8025, recall score of .7872, F1 score of .8315, and a precision score of .881. Several important factors related to cement leakage were drawn based on the analysis of SHAP values and their clinical significance.

CONCLUSION

The ML based predictive model demonstrated significant accuracy in forecasting bone cement leakage for patients with OVCF undergoing PVA. When combined with SHAP, ML facilitated a personalized prediction and offered a visual interpretation of feature importance.

摘要

研究设计

回顾性研究。

目的

我们的目标是创建可理解的机器学习(ML)模型,该模型能够预测骨质疏松性椎体压缩骨折(OVCF)患者经皮椎体强化术(PVA)中的骨水泥渗漏情况,同时识别相关风险因素。

方法

我们纳入了接受PVA治疗的患者(n = 425)的数据。为了预测骨水泥渗漏,我们基于多种参数设计了六个模型。依靠区分度、校准度和临床效用指标来评估和比较预测性能。使用SHapley值加法解释(SHAP)方法来解释模型并评估与骨水泥渗漏相关的风险因素。

结果

骨水泥渗漏发生率为50.4%。二元逻辑回归分析确定皮质破坏(比值比[OR] 6.880,95%置信区间[CI] 4.209 - 11.246)、椎基底孔征(OR 2.142,95% CI 1.303 - 3.521)、骨折类型(OR 1.683,95% CI 1.083 - 2.617)和骨水泥体积(OR 1.198,95% CI 1.070 - 1.341)是骨水泥渗漏的独立预测因素。在测试集中,XGBoost模型在预测骨水泥渗漏方面优于所有其他模型,曲线下面积(AUC)为0.8819,准确率为0.8025,召回率为0.7872,F1分数为0.8315,精确率为0.881。基于SHAP值分析及其临床意义得出了几个与骨水泥渗漏相关的重要因素。

结论

基于ML的预测模型在预测接受PVA治疗的OVCF患者的骨水泥渗漏方面显示出显著的准确性。当与SHAP相结合时,ML有助于进行个性化预测并提供特征重要性的直观解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0948/11881125/69567bb45c61/10.1177_21925682231204159-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验