Wright Jay S, Sharninghausen Liam S, Lapsys Alex, Sanford Melanie S, Scott Peter J H
Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
ACS Cent Sci. 2024 Aug 23;10(9):1674-1688. doi: 10.1021/acscentsci.4c00997. eCollection 2024 Sep 25.
Fluorine-18 is the most routinely employed radioisotope for positron emission tomography, a dynamic nuclear imaging modality. The radiolabeling of C-H bonds is an attractive method for installing fluorine-18 into organic molecules since it can preclude the cumbersome prefunctionalization of requisite precursors. Although electrophilic "F" reagents (e.g., [F]F) are effective for C-H radiolabeling, state-of-the-art methodologies predominantly leverage high molar activity nucleophilic [F]fluoride sources (e.g., [F]KF) with substantial (pre)clinical advantages. Reflecting this, multiple nucleophilic C-H radiolabeling techniques of high utility have been disclosed over the past decade. However, the adoption of (pre)clinical C-H radiolabeling has been slow, and PET imaging agents are still routinely prepared via methods that, despite a high level of practicality, are limited in scope (e.g., SAr, S2 radiofluorinations). By addressing the drawbacks inherent to these strategies, C-H radiofluorination and radiofluoroalkylation carry the potential to complement and supersede state-of-the-art labeling methods, facilitating the expedited production of PET agents used in disease staging and drug development. In this Outlook, we showcase recent C-H labeling developments with fluorine-18 and discuss the merits, potential, and barriers to adoption in (pre)clinical settings. In addition, we highlight trends, challenges, and directions in this emerging field of study.
氟-18是正电子发射断层扫描(一种动态核成像方式)中最常使用的放射性同位素。碳氢键的放射性标记是将氟-18引入有机分子的一种有吸引力的方法,因为它可以避免所需前体的繁琐预官能化。尽管亲电“F”试剂(如[F]F)对碳氢键放射性标记有效,但目前最先进的方法主要利用具有显著(临床前)优势的高摩尔活性亲核[F]氟化物源(如[F]KF)。鉴于此,在过去十年中已经公开了多种实用性高的亲核碳氢键放射性标记技术。然而,临床前碳氢键放射性标记的应用进展缓慢,正电子发射断层扫描成像剂仍通常通过一些方法制备,这些方法尽管实用性高,但范围有限(如芳基亲核取代反应、S2放射性氟化反应)。通过解决这些策略固有的缺点,碳氢键放射性氟化和放射性氟烷基化有潜力补充和取代目前最先进的标记方法,促进用于疾病分期和药物开发的正电子发射断层扫描剂的快速生产。在本展望中,我们展示了最近氟-18碳氢键标记的进展,并讨论了在临床前环境中应用的优点、潜力和障碍。此外,我们强调了这一新兴研究领域的趋势、挑战和方向。