Mustakim Nafis, Vera Luis F Rodriguez, Pinto Jose Pacheco, Seo Sang-Woo
Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA.
Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA; Cadence Design Systems, San Jose, CA 95134 USA.
J Microelectromech Syst. 2024 Oct;33(5):543-549. doi: 10.1109/jmems.2024.3418373. Epub 2024 Jul 3.
Gold nanorods (GNRs) are one of the most promising biomaterial choices for the photothermal activation of neurons due to their relative biocompatibility, unique photothermal properties, and broad optical tunability through their synthetic shape control. While photothermal stimulation using randomly accumulated GNRs successfully demonstrates the potential treatment of functional neural disorders by modulating the neuronal activities using localized heating, there are limited demonstrations to translate this new concept into large-arrayed neural stimulations. In this paper, we report an arrayed PDMS micropillar platform in which GNRs are embedded as pixel-like, arrayed photothermal stimulators at the tips of the pillars. The proposed platform will be able to localize GNRs at predetermined pillar positions and create thermal stimulations using near-infrared (NIR) light. This will address the limitations of randomly distributed GNR-based approaches. Furthermore, a flexible PDMS pillar structure will create intimate interfaces on target cells. By characterizing the spatiotemporal temperature change in the platform with rhodamine B dye, we have shown that the localized temperature can be optically modulated within 4°C, which is in the range of temperature variation required for neuromodulation using NIR light. We envision that our proposed platform has the potential to be applied as a photothermal, neuronal stimulation interface with high spatiotemporal resolution.
金纳米棒(GNRs)因其相对的生物相容性、独特的光热特性以及通过合成形状控制实现的广泛光学可调性,成为用于神经元光热激活的最具潜力的生物材料选择之一。虽然使用随机聚集的GNRs进行光热刺激成功地证明了通过局部加热调节神经元活动来治疗功能性神经障碍的潜力,但将这一新概念转化为大规模神经刺激的实例却很有限。在本文中,我们报道了一种阵列式聚二甲基硅氧烷(PDMS)微柱平台,其中GNRs被嵌入到柱尖处类似像素的阵列式光热刺激器中。所提出的平台将能够将GNRs定位在预定的柱位置,并使用近红外(NIR)光产生热刺激。这将解决基于随机分布的GNRs方法的局限性。此外,柔性的PDMS柱结构将在靶细胞上形成紧密的界面。通过用罗丹明B染料表征平台中的时空温度变化,我们表明局部温度可以在4°C范围内进行光学调制,这处于使用NIR光进行神经调节所需的温度变化范围内。我们设想我们提出的平台有潜力作为具有高时空分辨率的光热神经元刺激界面来应用。