Suppr超能文献

利用深度学习改善单平面波成像中的图像质量。

Image quality improvement in single plane-wave imaging using deep learning.

作者信息

Miura Kanta, Shidara Hiromi, Ishii Takuro, Ito Koichi, Aoki Takafumi, Saijo Yoshifumi, Ohmiya Jun

机构信息

Graduate School of Information Sciences, Tohoku University, 6-6-05, Aramki Aza Aoba, Sendai-shi, 9808579, Miyagi, Japan.

Graduate School of Information Sciences, Tohoku University, 6-6-05, Aramki Aza Aoba, Sendai-shi, 9808579, Miyagi, Japan.

出版信息

Ultrasonics. 2025 Jan;145:107479. doi: 10.1016/j.ultras.2024.107479. Epub 2024 Sep 30.

Abstract

In ultrasound image diagnosis, single plane-wave imaging (SPWI), which can acquire ultrasound images at more than 1000 fps, has been used to observe detailed tissue and evaluate blood flow. SPWI achieves high temporal resolution by sacrificing the spatial resolution and contrast of ultrasound images. To improve spatial resolution and contrast in SPWI, coherent plane-wave compounding (CPWC) is used to obtain high-quality ultrasound images, i.e., compound images, by coherent addition of radio frequency (RF) signals acquired by transmitting plane waves in different directions. Although CPWC produces high-quality ultrasound images, their temporal resolution is lower than that of SPWI. To address this problem, some methods have been proposed to reconstruct a ultrasound image comparable to a compound image from RF signals obtained by transmitting a small number of plane waves in different directions. These methods do not fully consider the properties of RF signals, resulting in lower image quality compared to a compound image. In this paper, we propose methods to reconstruct high-quality ultrasound images in SPWI by considering the characteristics of RF signal of a single plane wave to obtain ultrasound images with image quality comparable to CPWC. The proposed methods employ encoder-decoder models of 1D U-Net, 2D U-Net, and their combination to generate the high-quality ultrasound images by minimizing the loss that considers the point spread effect of plane waves and frequency spectrum of RF signals in training. We also create a public large-scale SPWI/CPWC dataset for developing and evaluating deep-learning methods. Through a set of experiments using the public dataset and our dataset, we demonstrate that the proposed methods can reconstruct higher-quality ultrasound images from RF signals in SPWI than conventional method.

摘要

在超声图像诊断中,单平面波成像(SPWI)能够以超过1000帧/秒的速度获取超声图像,已被用于观察详细的组织和评估血流。SPWI通过牺牲超声图像的空间分辨率和对比度来实现高时间分辨率。为了提高SPWI中的空间分辨率和对比度,相干平面波复合(CPWC)通过对在不同方向发射平面波所采集的射频(RF)信号进行相干相加,来获得高质量的超声图像,即复合图像。尽管CPWC能产生高质量的超声图像,但其时间分辨率低于SPWI。为了解决这个问题,已经提出了一些方法,用于从在不同方向发射少量平面波所获得的RF信号中重建出与复合图像相当的超声图像。这些方法没有充分考虑RF信号的特性,导致与复合图像相比图像质量较低。在本文中,我们提出了通过考虑单个平面波的RF信号特征来在SPWI中重建高质量超声图像的方法,以获得与CPWC图像质量相当的超声图像。所提出的方法采用1D U-Net、2D U-Net及其组合的编码器-解码器模型,通过在训练中最小化考虑平面波点扩散效应和RF信号频谱的损失来生成高质量的超声图像。我们还创建了一个公共的大规模SPWI/CPWC数据集,用于开发和评估深度学习方法。通过使用公共数据集和我们自己的数据集进行的一系列实验,我们证明了所提出的方法能够从SPWI中的RF信号重建出比传统方法更高质量的超声图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验