Suppr超能文献

用于单平面波超声射频数据图像重建的鲁棒级联深度神经网络。

A robust cascaded deep neural network for image reconstruction of single plane wave ultrasound RF data.

机构信息

The Pennsylvania State University, University Park, PA, 16802, USA.

出版信息

Ultrasonics. 2023 Jul;132:106981. doi: 10.1016/j.ultras.2023.106981. Epub 2023 Mar 8.

Abstract

Reconstruction of ultrasound data from single plane wave Radio Frequency (RF) data is a challenging task. The traditional Delay and Sum (DAS) method produces an image with low resolution and contrast, if employed with RF data from only a single plane wave. A Coherent Compounding (CC) method that reconstructs the image by coherently summing the individual DAS images was proposed to enhance the image quality. However, CC relies on a large number of plane waves to accurately sum the individual DAS images, hence it produces high quality images but with low frame rate that may not be suitable for time-demanding applications. Therefore, there is a need for a method that can create a high quality image with higher frame rates. Furthermore, the method needs to be robust against the input transmission angle of the plane wave. To reduce the method's dependence on the input angle, we propose to unify the RF data at different angles by learning a linear data transformation from different angled data to a common, 0° data. We further propose a cascade of two independent neural networks to reconstruct an image, similar in quality to CC, by making use of a single plane wave. The first network, denoted as "PixelNet", is a fully Convolutional Neural Network (CNN) which takes in the transformed time-delayed RF data as input. PixelNet learns optimal pixel weights that get element-wise multiplied with the single angle DAS image. The second network is a conditional Generative Adversarial Network (cGAN) which is used to further enhance the image quality. Our networks were trained on the publicly available PICMUS and CPWC datasets and evaluated on a completely separate, CUBDL dataset obtained from different acquisition settings than the training dataset. The results thus obtained on the testing dataset, demonstrate the networks' ability to generalize well on unseen data, with frame rates better than the CC method. This paves the way for applications that require high-quality images reconstructed at higher frame rates.

摘要

从单平面波射频 (RF) 数据重建超声数据是一项具有挑战性的任务。如果仅使用单个平面波的 RF 数据,传统的延迟求和 (DAS) 方法会生成低分辨率和低对比度的图像。为了提高图像质量,提出了一种相干累加 (CC) 方法,通过相干累加各个 DAS 图像来重建图像。然而,CC 依赖于大量的平面波来准确地累加各个 DAS 图像,因此它可以生成高质量的图像,但帧率较低,可能不适合时间要求较高的应用。因此,需要一种能够以更高的帧率生成高质量图像的方法。此外,该方法需要对输入的平面波传输角度具有鲁棒性。为了降低该方法对输入角度的依赖性,我们提出通过从不同角度的数据学习线性数据变换,将不同角度的 RF 数据统一到一个共同的 0°数据。我们进一步提出了级联的两个独立的神经网络,通过利用单个平面波来重建与 CC 相似质量的图像。第一个网络称为“PixelNet”,是一个完全卷积神经网络 (CNN),它将变换后的时移 RF 数据作为输入。PixelNet 学习最佳像素权重,这些权重与单个角度的 DAS 图像进行逐元素乘法。第二个网络是条件生成对抗网络 (cGAN),用于进一步提高图像质量。我们的网络在公开的 PICMUS 和 CPWC 数据集上进行训练,并在从训练数据集获得的完全不同的采集设置的 CUBDL 数据集上进行评估。在测试数据集上获得的结果表明,网络能够很好地推广到未见数据,帧率优于 CC 方法。这为需要以更高帧率重建高质量图像的应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验