Suppr超能文献

利用飞行时间二次离子质谱法识别过程差异:一种多元变量分析分解策略

Identifying Process Differences with ToF-SIMS: An MVA Decomposition Strategy.

作者信息

Fransaert Nico, Robert Allyson, Cleuren Bart, Manca Jean V, Valkenborg Dirk

机构信息

UHasselt, X-LAB, Agoralaan, 3590 Diepenbeek, Belgium.

UHasselt, Theory Lab, Agoralaan, 3590 Diepenbeek, Belgium.

出版信息

J Am Soc Mass Spectrom. 2024 Dec 4;35(12):3116-3125. doi: 10.1021/jasms.4c00327. Epub 2024 Oct 4.

Abstract

In time-of-flight secondary ion mass spectrometry (ToF-SIMS), multivariate analysis (MVA) methods such as principal component analysis (PCA) are routinely employed to differentiate spectra. However, additional insights can often be gained by comparing processes, where each process is characterized by its own start and end spectra, such as when identical samples undergo slightly different treatments or when slightly different samples receive the same treatment. This study proposes a strategy to compare such processes by decomposing the loading vectors associated with them, which highlights differences in the relative behavior of the peaks. This strategy identifies key information beyond what is captured by the loading vectors or the end spectra alone. While PCA is widely used, partial least-squares discriminant analysis (PLS-DA) serves as a supervised alternative and is the preferred method for deriving process-related loading vectors when classes are narrowly separated. The effectiveness of the decomposition strategy is demonstrated using artificial spectra and applied to a ToF-SIMS materials science case study on the photodegradation of N719 dye, a common dye in photovoltaics, on a mesoporous TiO anode. The study revealed that the photodegradation process varies over time, and the resulting fragments have been identified accordingly. The proposed methodology, applicable to both labeled (supervised) and unlabeled (unsupervised) spectral data, can be seamlessly integrated into most modern mass spectrometry data analysis workflows to automatically generate a list of peaks whose relative behavior varies between two processes, and is particularly effective in identifying subtle differences between highly similar physicochemical processes.

摘要

在飞行时间二次离子质谱分析(ToF-SIMS)中,通常采用主成分分析(PCA)等多元分析(MVA)方法来区分光谱。然而,通过比较不同过程往往可以获得更多见解,每个过程都由其自身的起始光谱和结束光谱来表征,例如相同的样品经过略有不同的处理,或者略有不同的样品接受相同的处理时。本研究提出了一种通过分解与这些过程相关的载荷向量来比较此类过程的策略,该策略突出了峰相对行为的差异。此策略识别出了仅由载荷向量或结束光谱所捕获信息之外的关键信息。虽然PCA被广泛使用,但偏最小二乘判别分析(PLS-DA)作为一种有监督的替代方法,在类间分离较窄时是推导与过程相关的载荷向量的首选方法。使用人工光谱证明了分解策略的有效性,并将其应用于一个ToF-SIMS材料科学案例研究,该研究是关于光伏领域常用染料N719在介孔TiO阳极上的光降解。研究表明,光降解过程随时间变化,相应地识别出了产生的碎片。所提出的方法适用于标记(有监督)和未标记(无监督)光谱数据,可无缝集成到大多数现代质谱数据分析工作流程中,以自动生成两个过程之间相对行为不同的峰列表,并且在识别高度相似的物理化学过程之间的细微差异方面特别有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0182/11622371/94a76d0777ce/js4c00327_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验