Primack Abby S, Cazet Jack F, Little Hannah Morris, Mühlbauer Susanne, Cox Ben D, David Charles N, Farrell Jeffrey A, Juliano Celina E
Department of Molecular and Cellular Biology, University of California, Davis, CA 95616.
Department of Plant Biochemistry, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.
bioRxiv. 2023 Apr 4:2023.03.15.531610. doi: 10.1101/2023.03.15.531610.
The small freshwater cnidarian polyp uses adult stem cells (interstitial stem cells) to continually replace neurons throughout its life. This feature, combined with the ability to image the entire nervous system (Badhiwala et al., 2021; Dupre & Yuste, 2017) and availability of gene knockdown techniques (Juliano, Reich, et al., 2014; Lohmann et al., 1999; Vogg et al., 2022), makes a tractable model for studying nervous system development and regeneration at the whole-organism level. In this study, we use single-cell RNA sequencing and trajectory inference to provide a comprehensive molecular description of the adult nervous system. This includes the most detailed transcriptional characterization of the adult nervous system to date. We identified eleven unique neuron subtypes together with the transcriptional changes that occur as the interstitial stem cells differentiate into each subtype. Towards the goal of building gene regulatory networks to describe neuron differentiation, we identified 48 transcription factors expressed specifically in the nervous system, including many that are conserved regulators of neurogenesis in bilaterians. We also performed ATAC-seq on sorted neurons to uncover previously unidentified putative regulatory regions near neuron-specific genes. Finally, we provide evidence to support the existence of transdifferentiation between mature neuron subtypes and we identify previously unknown transition states in these pathways. All together, we provide a comprehensive transcriptional description of an entire adult nervous system, including differentiation and transdifferentiation pathways, which provides a significant advance towards understanding mechanisms that underlie nervous system regeneration.
小型淡水刺胞动物水螅体在其一生中利用成体干细胞(间质干细胞)不断替换神经元。这一特性,再加上能够对整个神经系统进行成像(巴迪瓦拉等人,2021年;迪普雷和尤斯特,2017年)以及基因敲低技术的可用性(朱利亚诺、赖希等人,2014年;洛曼等人,1999年;沃格等人,2022年),使其成为在全生物体水平上研究神经系统发育和再生的一个易于处理的模型。在本研究中,我们使用单细胞RNA测序和轨迹推断来提供对成体神经系统的全面分子描述。这包括迄今为止对成体神经系统最详细的转录特征描述。我们鉴定出了11种独特的神经元亚型以及间质干细胞分化为每种亚型时发生的转录变化。为了构建基因调控网络以描述神经元分化的目标,我们鉴定出了48种在神经系统中特异性表达的转录因子,其中包括许多在两侧对称动物中作为神经发生保守调节因子的转录因子。我们还对分选的神经元进行了ATAC测序,以揭示神经元特异性基因附近以前未被识别的假定调控区域。最后,我们提供证据支持成熟神经元亚型之间转分化的存在,并确定了这些途径中以前未知的过渡状态。总之,我们提供了对整个成体神经系统的全面转录描述,包括分化和转分化途径,这为理解神经系统再生的潜在机制取得了重大进展。